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The technology for building functionally complete or ‘whole-cell’ biological simulations is rapidly de- 

veloping. However, the predictive capabilities of these simulations are hindered by the availability of 

parameter values, which are often difficult or even impossible to obtain experimentally and must there- 

fore be estimated. Using E. coli ’s glycolytic network as a model system, we describe and apply a new 

method which can estimate the values of all the system’s 102 parameters – fit to observations from stud- 

ies of proteomics, metabolomics, enzyme kinetics and chemical energetics – and find that the resulting 

metabolic models are not only well-fit, but also dynamically stable. An analysis of how well parameter 

values in the network were determined by the training data revealed that over 80% of the parameter 

values were not well-specified. Moreover, the distribution of well-determined values was biased to a spe- 

cific part of the network and against certain types of experimental data. Our results also suggest that 

perturbing the functional, energetic space of parameters (rather than traditional metabolic parameters) 

is a superior strategy for exploring the space of biological dynamics. The estimated parameter values 

matched both training data and previously withheld validation data within an order of magnitude for 

over 85% of the data points; notably, the area of greatest frustration in the network was also the most 

fully determined. Finally, our estimation method showed that fidelity to physiological observations such 

as network response time is enforced at the cost of fit to molecular parameter values. In summary, our 

reformulation enables estimation of accurate, biologically relevant parameters, generates insight into the 

biology of the simulated network, and appears generalizable to any biochemical network – potentially 

including whole-cell models. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In 2012, the construction and output of a ‘whole-cell’ model

as reported for the simplest known culturable bacterium, My-

oplasma genitalium ( Karr et al., 2012 ). In brief, a whole-cell model

s an integrated simulation of several ‘processes’ or dynamical sub-

odels, which attempts to account for the known function of ev-

ry gene in a given organism over at least one cell cycle. The sep-

ration of the model in this way – for example, into one submodel

hat represents transcription and another that represents carbon

nd energy metabolism – enables a process-specific selection of

odeling paradigms in order to best capture the available data rel-

vant to that process as well as the behavior which is to be mod-
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led. Subsequent analysis of the M. genitalium model showed that

t was able to predict the results of previously unperformed ex-

eriments, both at the level of cell physiology as well as enzyme

inetic parameters ( Sanghvi et al., 2013 ). A number of follow-up

tudies have built on this foundation, providing new applications

 Purcell et al., 2013 ), databases ( Karr et al., 2014; 2013 ), and visu-

lizations ( Lee et al., 2013 ). 

As large-scale in silico proxies for real cells, whole-cell mod-

ls have the potential to serve as platforms for integrating diverse

ources of biological data and generating new, testable hypotheses

onsequent of observed model behavior ( Carrera and Covert, 2015 ).

owever, the assembly of a complete whole-cell model is a daunt-

ng task ( Macklin et al., 2014 ). Throughout the iterative refine-

ent of submodels, progress is restricted by the lack of specific

uantitative data needed to parameterize a known dynamical be-

avior. Further, quantitative data may be inconsistent; this is par-

icularly a concern when data is gathered from different stud-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ies, on different organisms, or in non-native environments (e.g.

in vitro rather than in vivo ). An excellent review of the particular

challenges posed by whole-cell model parameterization was pub-

lished last year ( Babtie and Stumpf, 2017 ). These challenges limit

the scope of whole-cell models, and subsequently, their predictive

power. To support the continued refinement of whole-cell models,

it is clear that we need to adopt and develop strategies for whole-

cell parameter estimation. 

Towards this end, we sought to develop parameter estimation

techniques applicable to whole-cell like models, starting first with

the intention of expanding the metabolic submodel. To date, the

whole-cell metabolic submodels have utilized variants ( Birch et al.,

2014 ) of flux-balance analysis (FBA), a constraint-based optimiza-

tion technique that strictly enforces stoichiometric limitations but

does not directly incorporate kinetic or energetic information

( Orth et al., 2010 ). FBA is advantageous in that it can simultane-

ously capture the qualitative functional role of thousands of genes

with relatively few model parameters. However, the top-down,

optimization-based nature of FBA limits its generalizability, as the

constraints must be manually tuned for each modeled condition.

Alternatively, a traditional metabolic model composed of kinetic

rate laws in a system of ordinary differential equations (ODEs)

would allow for bottom-up, mechanistic predictions of metabolic

activity. 

As a model system for the development of parameter estima-

tion techniques, we selected the glycolytic pathway of E. coli both

for its detailed characterization in the literature and its immedi-

ate relevance to our ongoing work on the E. coli whole-cell model.

ODE models of biochemical pathways require exquisite, complete

parameterization of reaction activity; our model, composed of ki-

netic rate laws assembled using a procedure analogous to conve-

nience kinetics ( Liebermeister and Klipp, 2006 ), is no exception. To

inform our parameter values, we utilized observations from studies

of proteomics, metabolomics, chemical energetics and enzyme ki-

netics. However, as previously discussed, the available data is nei-

ther complete nor is it wholly applicable to in vivo models. There-

fore obtaining a complete, consistent set of parameter values re-

quires us to formulate and solve an explicit parameter estima-

tion problem, with the goal of matching some desired dynamical

behavior while simultaneously minimizing disagreement with the

available observations. 

These parameter estimation problems typically take the form

of multi-modal optimization problems (i.e. problems with multi-

ple local ‘solutions’); consequently they require global optimization

algorithms. Global optimization algorithms can be quite computa-

tionally expensive (i.e. running for hours on hundreds or thousands

of processors), and furthermore there is no guarantee for conver-

gence ( Moles et al., 2003 ). Despite these challenges, a number of

successful large-scale metabolic parameter estimations have been

performed. Most analogous to the work presented here are several

detailed kinetic models of E. coli central carbon metabolism ( Jahan

et al., 2016; Kurata and Sugimoto, 2018; Millard et al., 2017 ), opti-

mized using traditional approaches like genetic algorithms. Other

approaches (such as the ORACLE Chakrabarti et al., 2013 and k-

OptForce Chowdhury et al., 2014 platforms) utilize FBA to generate

flux profiles in concert with kinetic model parameterization. Addi-

tionally, an ‘ensemble modeling’ approach ( Khodayari et al., 2014 )

eschews typical Michaelis–Menten-like kinetic rate laws in favor of

parameterizing elementary reactions. Beyond parameterizing these

kinetic models, these large-scale parameter estimation effort s have

yielded insights into the systems-level control of metabolic activity.

However, indicated throughout these works is a consistent need

for powerful, efficient estimation of parameters. Parameter estima-

tion is itself an active area of research, including both statistical

(e.g. likelihood maximization, Bayesian inference ( Hug et al., 2013;

Liepe et al., 2015 )) and optimization-based approaches ( Fröhlich
t al., 2017; Jagiella et al., 2017; Penas et al., 2017 ). Because our

ventual goal involves whole-cell scale estimation, which is cur-

ently beyond the capacity of statistical approaches ( Babtie and

tumpf, 2017 ), we focused on optimization for the work described

ere. 

In the development of our own parameter estimation tech-

iques, designed with needs of whole-cell-like models in mind,

t was found that a reinterpretation of kinetic rate laws (our un-

erlying dynamic models) in terms of energetics facilitated several

ownstream procedures and provided a new conceptual basis for

nterpreting the space of metabolic dynamics. The details of this

einterpretation and its consequences are the subject of this study.

. Results 

In Section 2.1 we introduce our energetic reformulation

f standard kinetic rate laws, used throughout the study. In

ection 2.2 this new formulation is used to connect observations

o parameter values, elucidating the limited extent of existing lit-

rature in parameterizing a whole-cell-like kinetic model. We fur-

her apply this formulation to derive a new approach for explor-

ng the parameter space, dubbed ‘parsimonious’ perturbation, in

ection 2.3 . The resulting model parameters and their fit to train-

ng data are interpreted in Section 2.4 , with the dynamics of the

arameterized models following in Section 2.5 . We conclude with a

iscussion about the ramifications of this new formulation as well

s the biological consequences of our optimized parameter val-

es. Short explanations of our approaches are provided in the Ap-

endix. Full mathematical derivations, explicit methods, secondary

esults and a complete record of all curated data are in the pro-

ided Supplementary Materials. 

.1. Standard kinetic rate laws can be reformulated to an energetic 

asis 

For this study we developed an energetic reformulation of

ichaelis–Menten-like kinetic rate laws, which greatly facilitates

ownstream parameter estimation procedure and unifies several

nergetic ideas (e.g. transition energies and binding energies) into

ne Boltzmann distribution-like equation. The most immediate

tility of this reformulation is its decomposition of several cou-

led parameters (e.g. forward and reverse catalytic rate constants,

quilibrium constants) into uncoupled (i.e. independent) parame-

ers (e.g. standard energies of formation). We also discovered sev-

ral additional benefits to this reformulation; a handful of these

ill be described in subsequent sections, with many others ex-

anded in the Supplementary Materials. 

Our reformulation begins with a simple metabolic model ex-

ressed as a system of ordinary of differential equations (ODEs).

hese equations describe the time evolution of intracellular

etabolite concentrations ˙ c with respect to the stoichiometries of

odeled reactions S and kinetic rate laws for each reaction v (c)

which are themselves functions of the metabolite concentrations).

dditionally, we account for the dilution of metabolites (conse-

uent of cell growth) at the specific growth rate μ. Together this

ystem of ODEs can be compactly represented as 

˙ 
 = Sv (c) − μc (1)

The kinetic rate laws v ( c ) are assembled using a procedure

hat yields equations comparable to convenience kinetics, an ap-

roach developed by Liebermeister et al. just over a decade ago

 Liebermeister and Klipp, 2006 ). Briefly, every kinetic rate law is

esigned to be ‘complete’ in the sense that it is fully reversible

subject to the limitations imposed by chemical energetics) and

xhibits proper asymptotic behavior (i.e. saturating to some max-

mum rate at high substrate concentrations, and likewise dimin-

shing to a rate of zero at low substrate concentrations). We use
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Transition state energy:

Effective binding energy:

Energy from enzyme concentration:
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Linear coeffcient
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Energy from metabolite concentration:
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Fig. 1. Energetic reformulation of a kinetic rate law. (A) The energetic reformulation 

of a kinetic rate law for the reaction A � B, as presented in the text, in terms 

of differences between energy levels. (B) The new Gibbs energy (or energy-like) 

parameterization, overlaid upon a reaction diagram. (C) The differences between 

energy levels illustrated as linear combinations of the basic model parameters. 
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his procedure to assemble an ODE model of 102 parameters for

leven kinetic rate laws and eighteen metabolites. The full kinetic

ate laws for the model system can be found in the Supplementary

aterials. 

For the sake of demonstration, we consider the kinetic rate law

ssociated with the simple case of a reversible reaction A � B : 

 = 

k cat,f c E 

K 

M 

A 

c A − 1 
K eq c B 

1 + 

c A 
K M 

A 

+ 

c B 
K M 

B 

(2) 

This is a standard formulation of Michaelis–Menten-like ki-

etics for a unimolecular, reversible reaction (i.e. an isomeriza-

ion). This formulation is appealing in that it is naturally ex-

ressed in terms of easily interpreted parameters (e.g. concentra-

ions, catalytic rate constants). In contrast, our reformulation ex-

resses these kinetic rate laws in terms of energetic parameters.

nder this transformation, developed in Appendix A.1 , Eq. (2) be-

omes 

 = k � 
E 
(
�G 

MAK,f 
)

− E 
(
�G 

MAK,r 
)

1 + E 
(
�G 

b 
A 

)
+ E 

(
�G 

b 
B 

) (3) 

here E(�G ) = exp −�G/RT , k � is an arbitrary constant for cor-

ecting units, and 

G 

MAK,f = G 

‡ − G 

E − G 

◦
A − G 

c 
A (4) 

G 

MAK,r = G 

‡ − G 

E − G 

◦
B − G 

c 
B (5) 

�G 

b 
A = G 

b 
A − G 

c 
A (6) 

�G 

b 
B = G 

b 
B − G 

c 
B (7) 

re the differences in energy levels ( �G terms) as linear combina-

ions of other energy or energy-like parameters. The relationships

etween these basic and derived parameters are depicted schemat-

cally in Fig. 1 . 

Our reformulated parameters can be interpreted in terms of ex-

sting kinetic and energetic concepts; for example, �G 

MAK,f is the

ransition energy of the forward reaction in the limit that the rate

f reaction is well approximated by mass-action kinetics (i.e. when

ubstrate concentrations are relatively low), and �G 

b 
A 

is the energy

ssociated with the propensity for molecule A to bind the enzyme.

ikewise the new basic parameters are related to well understood

erms; G 

◦
A 

is the standard Gibbs energy of formation for molecule

, and G 

c 
A 

is the Gibbs energy contribution associated with con-

entration (i.e. G 

c 
A 

= RT ln c A ). (More thorough descriptions of these

erms and their relationships with other energetic or kinetic pa-

ameters are provided in the Supplementary Materials.) 

In the following sections we will describe how this reformu-

ation facilitates both basic analysis of our training data as well as

he development of our novel perturbation approach for parameter

stimation. 

.2. The energetic reformulation readily links data availability to 

odel parameters 

The parameter reformulation presented in Section 2.1 allows us

o ascertain the degree to which our model parameter values can

e determined from training data, even when observed parame-

ers and model parameters do not have a one-to-one relationship

e.g. in the case of chemical equilibrium constants and standard

nergies of formation). The data used in this study is described in

ppendix A.2 , while the description of our ‘determinacy analysis’

rocedure is given in Appendix A.3 . In brief, the training data were
ransformed into the energetic parameter space (as a vector b ) and

ssociated with the basic parameter values (as vector x ) via the lin-

ar expression b = F x ; the matrix F can then be analyzed to deter-

ine where a parameter value is undetermined (the training data

rovides no information to help determine the parameter value)

ully determined (the value can be completely determined from the

raining data), or partially determined (the value is informed by the

raining data, but requires further information to be fixed). The de-

erminacy of each parameter is depicted on our network model of

lycolysis in Fig. 2 . 

In applying this procedure to our model system, we find that, of

he 102 model parameters, 19 are fully determined, 32 are partially

etermined (i.e. only determined relative to other parameters), and

1 are wholly undetermined. Thus, over 80% of the parameters in

ur model are underdetermined. 

Beyond the total determinacy of parameter values, given the cu-

ated literature, we also observe biases in the availability of certain

ypes of data. First, we observe that part of the network, centered

round the fructobisphosphate aldolase (fba) reaction in upper gly-

olysis, has been investigated more extensively than the rest. Addi-

ionally, the majority of underdetermined parameter values (35/51

r 69%) correspond to effective binding energies (i.e. Michaelis–

enten saturation constants), particularly for substrates of the re-

ctions opposite the canonical (usually glycolytic) direction of re-

ction. 

We also see that both enzyme concentrations and standard en-

rgies of formation are never fully determined. This is readily ex-

lained in the context of the training data. In the case of stan-

ard energies of formation, these parameter values are only deter-

ined relative to one another, due to the fact that our most rele-

ant training data is chemical equilibria constants (each of which

s a composition of two or more standard energies of formation in

heir corresponding stoichiometric ratios). The underdeterminacy 

f the enzyme concentrations arises from the fact that proteomics

ata were expressed as relative abundances, eliminating the need

o scale this data but somewhat reducing its information content. 
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Fig. 2. Network-parameter diagram. Diagram of the modeled network ( E. coli ’s gly- 

colytic pathway), overlaid with one symbol for each of the 102 model parameters 

(key provided in Fig. 1 B). Each symbol is styled according to its determinacy , i.e. the 

extent to which its value can be inferred from the training data (parameter value 
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While not all independent parameters need to be established

to concretely define model dynamics, the extent of non-fully de-

termined parameters, as well as the non-uniformity of where de-

terminacy occurs throughout the network, demonstrates a serious

need for a parameter estimation system that can estimate a large

number of unknown parameter values simultaneously. In the next

section we will perform such a parameter estimation, facilitated by

our energetic parameter reformulation. 
.3. A novel perturbation approach leads to more successful 

arameter estimation 

Next, we recognized that the energetic reformulation of the

inetic rate laws enabled the development of a novel perturba-

ion approach that leads to successful estimation of parameter val-

es, even when applied to a rudimentary optimization algorithm.

e began with a ‘naive’ approach in which the basic model pa-

ameters were perturbed individually. This approach struggled to

onverge to a dynamically viable, well fit set of parameter val-

es, as confirmed by inspecting objective values as well as per-

orming linear stability analysis ( Strogatz, 1994 ) (LSA) on the pa-

ameterized models (see Appendix A.6 ) ( Fig. 3 ). This result was

llustrative of the technical challenges posed by these parame-

er estimation problems. Several strategies have been employed in

he context of biological networks, with varying degrees of suc-

ess ( Moles et al., 2003 ). In practice, strategies such as genetic

lgorithms ( Jahan et al., 2016 ) and particle swarm optimization

 Millard et al., 2017 ) have been successfully applied to estimate pa-

ameter on models of large biochemical networks, albeit at signifi-

ant computational costs. 

These results led us to suspect that a perturbation strategy

hich was sensitive to the context of the parameters (and there-

ore sensitive to the structure of the modeled biological system)

ould more effectively search the parameter space. For example,

onsider a parameter such as the concentration of ATP, a metabo-

ite utilized in several reactions. Somewhat near an optimal set of

arameter values, it would be difficult to perturb the concentration

f ATP without upsetting the dynamics in many other parts of the

etwork, presumably causing the optimization to become trapped

n a ‘corner’ of the high-dimensional parameter space. 

To address this concern we developed an approach that allowed

s to perturb the parameters in a fashion that was minimally dis-

uptive to the dynamical behavior of the system as a whole –

ence, a ‘parsimonious’ perturbation in terms of system behavior.

arsimonious perturbations can be achieved by perturbing derived

odel parameters related to dynamical behavior (e.g. the differ-

nces in energy levels corresponding to a maximum rate of reac-

ion v max or a saturation ratio c/K 

M ), and selecting a search direc-

ion that minimally disrupts the other derived model parameters.

he mathematical procedure for obtaining a parsimonious pertur-

ation vector is given in Appendix A.4 . 

For either perturbation approach, our parameter estimation

roblem is formalized as the simultaneous optimization of two ob-

ective terms; first, to minimize the disagreement with reported

arameter values, expressed as the ‘misfit cost’ function f ( x ); and

econd, to ensure that the simulations achieve a steady-state,

hich we express as the ‘non-steady-state cost’ function g ( x ). For-

ally we write this as the optimization problem 

in 

x 
f (x ) + w · g(x ) (8)

here w is some weight that we increase until g ( x ) is sufficiently

mall. (The complete expression of these terms is provided in

ppendix A.5 .) 

To solve this optimization problem, we employ an algorithm

described extensively in the Supplementary Materials) in which

e perturb our current best parameter values and search for an

mproved (smaller) objective value. The resulting values of these

bjective terms are shown in Fig. 3 for 300 attempts using each

erturbation approach. 

Fig. 3 shows that, in contrast with the ‘naive’ approach, the

ajority of attempts using the ‘parsimonious’ perturbation ap-

roach successfully minimize the non-steady-state cost (234 or

8%). These attempts also exhibit misfit costs that are at the low-

st part of the range. Our results suggest that perturbing the

unctional, energetic space of parameters (rather than traditional
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etabolic parameters) is a superior strategy for exploring the

pace of biological dynamics. 

.4. Estimated parameter value distributions compare well with 

raining and validation data 

Our next objective was to evaluate the quality of the dynam-

cally viable sets of estimated parameter values, using three met-

ics: (1) fit to the training data, (2) fit to a set of withheld val-

dation (test) data, and (3) consistency of the output simulation

ynamics with physiological observations. 

Fig. 4 B compares the estimated parameter values against the

44 training data values (corresponding to 45 basic or derived

odel parameters) utilized in the expression of the misfit cost

unction. We find that the median estimated parameter values are,

s desired, generally well fit to their training (40 of 45 or 88%

alling within ten-fold of the median observed value), and more-

ver that the distributions of the parameter values are typically

uite narrow. 

Beyond the degree of fit to our training data, we also sought

o evaluate whether our parameter estimation system could make
easonable predictions of withheld parameter values (i.e. test or

alidation data). Fig. 4 C shows the distributions of predicted pa-

ameter values against catalytic rate constants estimated from spe-

ific activity data. Here we find that our predictions are ‘well fit’

again, within ten-fold) with the observed values for five of the six

eactions, where the one poor fit is for the phosphoglycerate mu-

ase (gpm) reaction. 

The main point of frustration in these comparisons appears to

e centered around the triosephosphate isomerase (tpi) reaction,

 topologically unusual reaction for this network in that it inter-

onverts between the two upstream products of the fructobisphos-

hate aldolase (fba) reaction to feed into the glyceraldehyde phos-

hate dehydrogenase (gap) reaction. Parameter values related to

hese three reactions are poorly fit to the training data, suggest-

ng one or more conflicts between the experimental data and the

esired behavior of the dynamical model. In particular we find

hat the chemical equilibria constants for the fba and tpi reactions,

long with the concentration of the fba enzyme and Michaelis–

enten saturation constant for glyceraldehyde phosphate in the

ap reaction are all shifted in a fashion that would facilitate
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greater flux through glycolysis. Interestingly, this portion of the

network is also the most fully determined with regard to model

parameters. 

2.5. Identifying a trade-off between conformity to physiological 

observations and fit to molecular-level measurements 

We next considered our third metric listed above: the consis-

tency of the output simulation dynamics to physiological observa-

tions. We first verified that all sets of estimated parameter values

with sufficiently low non-steady-state costs (very small values of
 ( x ), as shown in Fig. 3 ) were also dynamically stable, reaching a

teady-state over time (top row of Fig. 5 ). However, this charac-

erization also revealed that the recovery times were very slow, on

he order of hours. This was far longer than the anticipated pertur-

ation recovery times for real cells, which other studies suggested

hould be on the order of seconds ( Schaub and Reuss, 2008 ). 

By performing LSA on the original model equations ( Eq. 1 ),

nder the assumption that all metabolite concentrations were in

xcess of their corresponding Michaelis–Menten saturation con-

tants ( K 

M values), we found that all characteristic recovery

imes (CRTs) converged to τ = 1 /μ ≈ 1 . 4 h , consistent with the re-
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overy times observed by simulating the ODEs. This suggested

hat the cause of the slow recovery times was high enzyme

aturation. 

To test this hypothesis, we augmented the original parameter

stimation problem to include terms in the misfit cost function

 ( x ) that penalized for excess enzyme saturation. While the mis-

t cost function was originally designed to penalize for order-of-

agnitude differences between training data and parameter val-

es, our energetic reformulation of model equations allows us to

lso penalize for any combination of parameters values against

ome other expected value. We chose to penalize for metabo-

ite concentrations c in excess of their corresponding Michaelis–

enten saturation constants K 

M (i.e. when c/K 

M > 1 ). The param-

ter estimation procedure was repeated on this augmented prob-

em, using a range of weights on the new terms. 

As the weighting on these terms was increased, we found that

he rates of recovery following a perturbation increased dramati-

ally (as shown in the remaining panels in Fig. 5 ). This is partic-
t  
larly apparent when the weight on the terms is greater than the

eight on the training data ( 10 +1 and higher). 

We also found that reduced enzyme saturation (higher weights

n the saturation penalty) led to other effects on our parameter

stimation, summarized in Table 1 . First, we noted that the over-

ll determinacy of the network was increased considerably by in-

roducing our penalty terms for enzyme saturation. In particular,

hereas 50% of the parameters were undetermined previously, our

ew strategy reduced this percentage to 9%. The inclusion of en-

yme saturation constraints also led to more realistic simulations

n terms of pathway utilization, as the canonically glycolytic reac-

ion pyruvate kinase (pyk) was favored over the canonically gluco-

eogenic reaction, phosphoenolpyruvate synthetase (pps). In con-

rast, the low- and no-weight parameter estimates tended to favor

he pps reaction. 

The benefits of higher network determinancy and more realis-

ic simulations with respect to response time and pathway utiliza-

ion were tempered by an increase in the misfit cost. Examining

he parameter misfit in more detail, we found that seven param-
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Table 1 

Summary of augmented (saturation penalized) parameter estimation re- 

sults. Where appropriate, values are reported as medians and median 

absolute deviations. 

Penalty weight a % undetermined b Misfit cost c ( f ) pyk flux d 

Not used (0) 50 24.7 ± 1.1 1.0 ± 0.5 

10 −1 9 24.2 ± 0.9 0.9 ± 0.6 

10 ± 0 9 41.3 ± 7.2 1.2 ± 0.7 

10 +1 9 39.7 ± 2.4 79.8 ± 0.8 

10 +2 9 40.9 ± 1.5 80.1 ± 1.1 

a Weight on the enzyme saturation penalty (if used). 
b Out of 102 parameters. 
c The misfit cost f to the original (unaugmented) training data. 
d Percent of net flux relative to the target overall pyruvate production 

rate. 
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Fig. 6. Fitness of estimated parameter values following problem augmentation. (A) 

The major changes (ten-fold or greater) to the training data fit, following problem 

augmentation, at the small ( 10 −1 ) and large ( 10 +1 ) saturation penalty weights. (B) 

Predicted k cat values compared to test data. Original distributions are reproduced 

from Fig. 4 for clarity; also see Fig. 4 A for the legend. 
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eter values were impacted, again centered about upper glycolysis

( Fig. 6 A). The degree of fit to the catalytic rate constants for pyk

and pps in our validation data set were also negatively impacted

( Fig. 6 B). This was unsurprising, given that the training data had

originally favored the pps reaction over pyk as described above. 

3. Discussion 

In summary, we found that a reformulation of kinetic rate laws

in terms of energetic parameters was necessary for developing pa-

rameter estimation techniques applicable to whole-cell modeling.

Such a reformulation was partially considered in the development

of convenience kinetics ( Liebermeister and Klipp, 2006 ); our ap-

proach builds on those concepts by also reformulating metabo-

lite and enzyme concentrations as energy or energy-like quantities.

While care should be taken to not overly interpret these quantities

as true energies (e.g. G 

b should be most properly thought of as an

effective binding energy), this energetic reformulation nonetheless

provides a theoretical basis for exploring the space of biological
ynamics in the derived, functional coordinate space of differences

etween energy levels. 

An interesting insight that arose from the energetic reformula-

ion came as we analyzed the determinacy of the network, using

 technique that can link parameter value observations to model

arameters, even when the relationship between the two is com-

lex. In the context of this study, we found a considerable amount

f underdetermined parameter values, consequent of a lack of ap-

licable experimental observations. In some cases the observations

ay have been made at some time but were excluded by our

omewhat selective curation process (e.g. our measurements were

equired to come from studies of E. coli ; see Appendix A.2 for more

equirements). For other parameters, no measurements have been

ade to date. In any event, we found that the determinacy was not

nly biased by experimental method but also by location in the

etwork. Thus, our determinacy analysis should help in prioritiz-

ng future measurement technologies to be developed and exper-

ments to be performed. However, considering that our system is

ne of the most well-established pathways in perhaps the world’s

ost characterized organism, this finding underscores the need for

arge-scale parameter estimation techniques to better understand

nd model biological systems. 

Most critically, we discovered that our energetic reformulation

nabled us to develop a new perturbation approach, which enabled

 rudimentary optimization algorithm to reliably estimate well fit,

ynamically viable model parameters. In particular, we found that

erturbing the functional, energetic space of parameters (rather

han traditional metabolic parameters) is a superior strategy for

xploring the space of biological dynamics, leading to sets of pa-

ameter values that fit the training and validation data well and

ere also dynamically viable. 

We were surprised to observe a slow response time in our orig-

nal simulations (i.e., based on the first parameter value estimates).

e addressed this issue by motivating our parameter estimation

ystem to find solutions with reduced enzyme saturation. While

e may naturally expect enzymes to be heavily saturated, thereby

chieving the highest possible rate of reaction per enzyme, our re-

ults suggest that this comes at the cost of reduced adaptability

o fluctuations in metabolite concentrations. This further implies

 competing evolutionary pressure between enzyme efficiency and

nzyme sensitivity, i.e. a trade-off between efficient growth under

table conditions and flexible growth under variable conditions.

hether this trade-off is a generalizable property of (unregulated)

etabolic pathways remains to be seen. 

Our reduced enzyme saturation approach led to more realistic

ystem-level behaviors, including faster recovery following a per-

urbation as well as utilization of the more canonical pathway for

yruvate production. However, these improvements came at the

ost of worse fits to training and test data. These results can be ex-

lained in three ways: first, that kinetics data for glycolysis – typ-

cally generated in vitro – is not consistent with expected in vivo

ehavior, due to the influence of ions, pH, and molecular crowding

n the cytoplasm that could lead to different effective parameter

alues ( Bennett et al., 2009 ). Alternatively, we could speculate that

ur expectations about pathway utilization and perturbation recov-

ry times are incorrect. A third explanation, which requires dis-

ounting neither the parameter value observations nor our behav-

oral expectations, is that our saturation penalty partially captures

he effects of kinetic (e.g. allosteric) regulation (effects which are

ot explicitly included in this model). Like the increased sensitivity

onferred by the reduced levels of saturation, allosteric regulation

ould allow modulation of reaction rates subject to perturbations

n the system (however these would likely be global signals, rather

han the local inputs and outputs of a given reaction). Glycolysis is

n fact known to be allosterically regulated ( Frankel, 1996 ), lending

redence to this possibility. 
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Finally, our parameter estimation also proved capable of iden-

ifying and reconciling points of frustration in the training data.

f particular note was our observation that the chemical equilib-

ia constants associated with the fructobisphosphate aldolase (fba)

nd triosephosphate isomerase (tpi) reactions had to be shifted

o favor the forward (glycolytic) direction of reaction to achieve

ufficient flux through the pathway. This result is parallel to our

ndings regarding the catalytic rate constants for pyk and pps, in

hich adding the constraint on enzyme saturation unexpectedly

ed to simulations that used the canonical glycolytic pathway – but

t the cost of agreement with some validation data. We expect that

urther targeted measurements may be able to resolve these frus-

ration points. 

We believe that the approach described here should generalize

o any biochemical network (as it is informed by the equations,

hich are in turn informed by the network structure) as well as to

ther optimization algorithms. In fact, we see no reason why this

echnique could not generalize to domains beyond biology, so long

s systems of equations can be expressed as sums of polynomials,

ational functions, or Boltzmann distributions. 

Ultimately, a complete whole-cell model should simulate the

unctional role of every gene and gene-product. This poses a

remendous parameter estimation challenge, on a scale far beyond

he simple pathway we have modeled in this study. Even neglect-

ng regulatory details, we estimate that a complete kinetic model

f metabolism, including hundreds of metabolites and reactions,

ould easily require thousands of parameters. Future work will

e required to conclusively determine whether the methods de-

cribed here can truly be expanded to that scale, and even beyond

etabolism to other biological submodels. If so, we anticipate that

ne of the most challenging bottlenecks in whole-cell modeling

an be largely resolved. 
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ppendix A. Methods 

1. Energetic reformulation of the kinetic rate law 

We begin by observing that the parameter values for the real

iological systems we intend to consider are strictly non-negative,

nd vary over orders of magnitude. Thus it is possible and practi-

al to work with logarithmically rescaled parameters. First consider

he chemical equilibrium constant for a given reaction, K 

eq , which

an be expressed in terms of the Gibbs standard energy of reaction

G °, the gas constant R , and temperature T : 

 

eq = exp −�G 

◦/RT (A.1) 
B  
Then, by solving for �G °, we obtain 

G 

◦ = −RT ln K 

eq (A.2) 

While K 

eq (and subsequently �G °) values are defined on a per-

eaction basis, they are not independent, in that any two reactions

r sets of reactions with the same net stoichiometry (e.g., isoen-

ymes, or alternate pathways) will reach the same equilibrium. For

he sake of parameter estimation, we need these parameters to be

ndependent. This is resolved by expressing the Gibbs standard en-

rgies of reaction in terms of the stoichiometry of the correspond-

ng reaction s and the Gibbs standard energies of formation G ° for

ach metabolite. Unlike the standard energies of reaction, the stan-

ard energies of formation are independent, and are related by the

inear equation 

 

T G 

◦ = �G 

◦ (A.3) 

= −RT ln K 

eq (A.4) 

Thus we have obtained our first set of independent, logarithmi-

ally rescaled parameters. Similar transformations are performed

or the other parameters in our study. In the case of the pa-

ameters with dimensions of concentration, that is, the metabo-

ite concentrations (e.g. c A ), enzyme concentrations (e.g. c E ), and

ichaelis–Menten saturation constants (e.g. K 

M 

A 
), we define 

 

c 
A = RT ln c A (A.5) 

here G 

c 
A 

is the Gibbs energy from the concentration of metabolite

, 

 

E = RT ln c E (A.6) 

here G 

E is the Gibbs energy from the concentration of the en-

yme, and 

 

b 
A = RT ln K 

M 

A (A.7) 

here G 

b 
A 

is the effective Gibbs energy for the binding of metabo-

ite A to the enzyme. (For expressive convenience, and without

oss of generality, we have selected a standard reference energy of

 kcal mol −1 for a concentration of 1M.) Substituting these trans-

ormations into Eq. (2) , the kinetic rate law becomes 

 = k cat,f 
E 
(
−G 

E − G 

c 
A 

+ G 

b 
A 

)
− E 

(
−G 

E − G 

c 
B 

+ G 

b 
A 

− G 

◦
B + G 

◦
A 

)
1 + E 

(
G 

b 
A 

− G 

c 
A 

)
+ E 

(
G 

b 
B 

− G 

c 
B 

) (A.8) 

here we define E(x ) = exp −x/RT for the sake of brevity. We can

urther rearrange this expression to make the forward and reverse

eaction rate terms in the numerator symmetric: 

 = k cat,f E 
(
G 

b 
A − G 

◦
A 

)E 
(
−G 

E − G 

c 
A 

− G 

◦
A 

)
− E 

(
−G 

E − G 

c 
B 

− G 

◦
B 

)
1 + E 

(
G 

b 
A 

− G 

c 
A 

)
+ E 

(
G 

b 
B 

− G 

c 
B 

) (A.9) 

Finally, we redefine the forward catalytic rate constant as 

 

cat,f = k � E 
(
G 

‡ + G 

◦
A − G 

b 
A 

)
(A.10) 

here G 

‡ is defined as the energy of the transition state, and k � is

imply a proportionality constant that could be estimated from the

yring equation ( Eyring, 1935 ). Together these transformations give

s Eq. (3) . Additional relations, as well as a glossary of symbols,

an be found in the Supplementary Materials. 

2. Data curation 

The pathway reaction substrates, products, enzymes and sto-

chiometry were obtained from EcoCyc ( Keseler et al., 2017 ).

 complete description of the curated training data (sources

nd values) are provided Supplemental Materials. In brief: In-

racellular metabolite concentrations were mostly taken from

ennett et al. (2009) . Some data were excluded; for example,
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the hexose-6-phosphate concentration, which would include both

glucose- and fructose-6-phosphate, was not used because of its

ambiguity. The proton concentration was computed assuming a

pH of 7.4 ( Wilks and Slonczewski, 2007 ). The water concentration

was computed assuming a water content of 70% ( Neidhardt et al.,

1990 ). Altogether, concentration training data for eleven of eigh-

teen metabolites were used. In addition to the concentration data,

we also utilized 61 chemical equilibrium observations curated in

the same metabolomics study ( Bennett et al., 2009 ). 

Kinetic parameters were adapted from fourteen sources ( Berry

and Marshall, 1993; Brown et al., 2009; Eyschen et al., 1999; Fen-

ton et al., 2003; Hao and Berry, 2004; Hines et al., 2007; Iancu

et al., 2005; Kelley-Loughnane et al., 2002; Kruger, 1989; Mainfroid

et al., 1993; Plater et al., 1999; Wang and Kemp, 2001; Zgiby et al.,

20 0 0; Zheng and Kemp, 1992 ). The curation of kinetic parame-

ters was facilitated in part through the BRENDA enzyme database

( Placzek et al., 2017 ). Only studies of E. coli enzymes were curated,

and only studies that reported catalytic rate constants ( k cat ) were

included. In general, only the kinetics of the dominant (most highly

expressed) isozyme were used. 

Proteomics data were taken from three sources to estimate

cellular concentrations ( Schmidt et al., 2016; Taniguchi, 2010;

Wi ́sniewski and Rakus, 2014 ). Again, only the dominant isozyme

was included. All enzymes had at least two reported values. 

Fluxomics data were not utilized as training data in this study.

However, based on the work by Toya et al. (2010) , an output pyru-

vate production rate of 0.14 mMs −1 was selected as a constraint.

Further, to capture the small albeit nontrivial effects of metabolite

dilution due to cellular growth, we assume a cellular doubling time

of one hour ( Woldringh et al., 1977 ). Finally, molecular weights are

taken from EcoCyc ( Keseler et al., 2017 ). These molecular weights

are not used directly in the dynamic model, but are utilized in

scaling the optimization objective function. 

A3. Determinacy analysis 

The determinacy of a given parameter can be ascertained by in-

specting F , the matrix that relates the basic parameters x to the

observed parameter values b via b = F x . We define an undeter-

mined parameter as one that is wholly uninformed by the train-

ing data; these are reflected by empty columns in F . A partially

determined parameter is one that can only be explicitly defined in

the context of fixing one or more other partially determined pa-

rameters. In the linearized form b = F x, this is equivalent to ask-

ing whether there exists a vector �x such that F x = F (x + �x ) , or

equivalently F �x = 0 , meaning that the perturbed parameter value

vector x + �x has the same fit as the original set of parameters x .

Such vectors �x are said to be in the null space of F , and therefore

are composed by linear combinations of basis vectors for the null

space. 

This idea can be expressed compactly by forming a matrix N

where the columns form a complete basis for the null space. Such

a matrix can be found by singular value decomposition (SVD), or

else by forming the null space orthogonal projection matrix 

N = I − F † F (A.11)

where the symbol † indicates the Moore–Penrose pseudoinverse;

in this case, N is an n × n matrix where n is the number of pa-

rameters (the size of x ). Regardless of how N is formed, we can

use this matrix to find vectors η such that �x = Nη for any �x ,

where 0 = F �x . If a row in N has a nonzero element, it means that

the corresponding basic parameter can be perturbed in a fashion

that does not change the overall fit to the data. Thus we call these

parameters partially determined. The remaining parameters must

then be fully determined. 
4. Parsimonious perturbation approach 

The unit parsimonious perturbation vectors, used for exploring

he parameter space in our optimization problem, can be calcu-

ated using the formula 

 = 

(
I − N ( AN ) 

† A 

)(
d T 

)† 
(A.12)

here d is some desired perturbation direction (i.e. the basic or

erived variable z = d T x that we wish to perturb, such that d T u =
 ), A is a matrix which defines the basic or derived variables y = Ax

hat we wish to hold constant, N is a null space basis on the vector

 

T (see Eq. (A.11) for one way to obtain such a basis), and I is an

dentity matrix. Again, the symbol † indicates the Moore–Penrose

seudoinverse. The complete derivation of this expression can be

ound in the Supplementary Materials. 

For the variables y (those which we generally wish to hold con-

tant under a perturbation) we choose the energy differences as-

ociated with the forward and reverse maximum rates of reac-

ion ( �G 

max,f and �G 

max,r ) as well as the binding energy differ-

nces for all substrates �G 

b . We also include the energies from

oncentration G 

c for all metabolites with dynamic concentrations.

ogether these derived variables can fully parameterize the ODE

ystem given in Eq. (1) . For the variables z = d T x (those which we

ish to perturb) we choose all variables in y . We also include all

asic variables such that the set of unit parsimonious perturba-

ion vectors is full rank (discarding any redundant u vectors found

n the process). These unit vectors are calculated once, and then

eused throughout the optimization procedure. 

5. Objective formulation 

Our parameter estimation objective, similar to that used by

ahan et al. (2016) , is thoroughly motivated and developed in the

upplementary Methods. In brief, the original problem may be

tated as 

in 

x 
f (x ) (A.13)

.t. g(x ) = 0 (A.14)

here f ( x ) is (again) our misfit cost term, and g ( x ) is a constraint

erm that is defined to be zero when we have obtained some non-

rivial steady state. Since g ( x ) is nonlinear, g(x ) = 0 is difficult if

ot impossible to enforce, and thus we choose instead to solve the

roblem 

in 

x 
f (x ) + w · g(x ) (A.15)

here we increase the weight w until we are satisfied that g ( x ) is

ufficiently small. 

We express f ( x ) as the sum of the absolute values of the differ-

nces in magnitude between parameter values and corresponding

bservations. The difference-in-magnitude is expressed as the dif-

erence between the logarithms of the estimated and observed val-

es (or, equivalently, the logarithm of the ratio). Under our ener-

etic reformulation, this simply becomes 

f (x ) = 

∑ 

i 

∣∣F T i x − b i 
∣∣ (A.16)

The difference-in-magnitude penalty is preferable because it is

imensionless (in contrast with, say, an absolute difference). We

se the sum of absolute values, rather than the sum of squares,

ecause the former tends to extract a few poor fits to the training

ata (i.e. points of frustration) rather than distributing the error

ore or less evenly across all observations. 
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We express g ( x ) as the sum of three terms: 

(x ) = 

∑ 

i 

˙ M 

2 
i + 

∑ 

i 

˙ G 

2 
i + 

(
r PYR (x ) 

r PYR, observed 

− 1 

)2 

(A.17) 

The first term is the sum of squares over the terms in the ODE

˙  , scaled by their molecular weights. The second term is the sum

f squares of the ODE terms normalized by their concentrations

i.e. ˙ c i /c i ), which under a scaling factor is equivalent to the sum

f squares of the rate of change in molar free energies ˙ G (where

 = G 

◦ + G 

c = G 

◦ + RT ln c). These terms may be thought of as the

bsolute and relative deviations from steady state, respectively. In

ractice we find that both terms are necessary to approach a true

teady state. The last term penalizes for any deviation from our

arget production rate of pyruvate, r PYR, observed . Without this term,

he system inevitably converges to the trivial steady state in which

ll rates of reaction are zero. 

6. Stability analysis 

The linear response of the system about its (supposed) steady

tate is given by the Jacobian on the system of ODEs at the steady

tate point, J ̇ c | ss . As this matrix is a first-order approximation to

he behavior of the system, its (local) dynamical modes can be de-

omposed by extracting the eigenvalues of J ̇ c | ss . The real part of an

igenvalue dictates whether it converges to or diverges from 0. A

ositive real component of an eigenvalue is divergent and there-

ore unstable, while a negative value is convergent (stable). If any

f the eigenvalues have a non-negative real component, then the

ystem is generally unstable. Regardless, the largest real eigenvalue

LRE) dominantly dictates the dynamics of the system, and there-

ore is used first to judge whether the system corresponding to a

iven set of parameters is stable, and secondly, to quantitatively

haracterize the rate of convergence if it is stable. For those pa-

ameterizations that are found to be dynamically stable, we calcu-

ate the characteristic recovery time (CRT) as the negative-inverse

f the LRE. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.jtbi.2018.10.041. 
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