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SUMMARY

Quantitative systems biology, in which predictive mathematical models are constructed to guide the design
of experiments and predict experimental outcomes, is at an exciting transition point, where the foundational
scientific principles are becoming established, but the impact is not yet global. The next steps necessary for
mathematical modeling to transform biological research and applications, in the same way it has already
transformed other fields, is not completely clear. The purpose of this perspective is to forecast possible an-
swers to this question—what needs to happen next—by drawing on the experience gained in another field,
specifically meteorology. We review here a number of lessons learned in weather prediction that are directly
relevant to biological systems modeling, and that we believe can enable the same kinds of global impact in
our field as atmospheric modeling makes today.
INTRODUCTION

Numerical weather prediction is a comprehensive endeavor to

integrate observations from around the world and in space,

over multiple timescales, into a mathematical model which

both holds an initial state of the global system and can produce

forecasts of changes in the atmosphere several days in advance

(Kerr, 2012). In terms of the benefits, prediction of storms such as

Hurricane Sandy 10 days in advance of landfall—with the corre-

sponding evacuation of hundreds of residents, saving both lives

and property—could arguably be ranked among the great tech-

nical triumphs in human history (Alley et al., 2019). Considering

further impacts, from agricultural planning to commerce to

renewable energy, contributing to an overall roughly 10-fold re-

turn on global investment, the massive impact of quantitative

large-scale modeling in this field is clear (Bauer et al., 2015).

In biology the stakes are even higher, especially with the tech-

nological game-changing advances in chromosomal modifica-

tion and their potential applications (Baltimore et al., 2015). In

particular, the use of the CRISPR system, for applications such

as editing the human germline, or attempting to eradicate infec-

tious disease by targeting massive insect populations with gene

drives, demonstrates both incredible promise and the very real

possibility of major catastrophes (Piergentili et al., 2021). More

than ever before, biologists need to be able to accurately predict

the possible outcomes and unintended consequences of their

new designs.

In this context, our lab previously identified important areas

required for large-scale modeling to realize its full potential—

from wet-lab experimental interrogation to accelerated compu-

tation, as well as collaboration and community development

(Figure 1) (Macklin et al., 2014). Re-examining the list for this

perspective piece, we were struck by how similar it was to the
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areas that have already been required and developed for atmo-

spheric modeling.

Thus, we describe here some of the major insights that have

been developed over the past almost two centuries of numerical

weather prediction and apply these lessons to the past and cur-

rent state of quantitative systems biology. We then attempt to

forecast the issues and opportunities that may arise and offer

recommendations for moving forward in this exciting and rapidly

developing field.

EXPERIMENTAL OBSERVATIONS HAVE EXPLODED IN
THROUGHPUT AND VARIETY...

From the weather stations that log visibility, wind speed, temper-

ature, barometric pressure, and the like on a regular basis, to the

geostationary and low earth orbiting satellites sending images to

scientists from outer space, weather forecasting depends on a

massive accumulation of heterogeneous data. Making these

measurements has required a significant investment in technol-

ogy development, but they are the underpinnings of all weather

models (Blum, 2019).

Similarly, astonishing progress has been made in biological

measurement, particularly in sequencing-related measurement,

to the point where some assert that extremely large data sets of

any kind should now be called ‘‘genomical’’ rather than ‘‘astro-

nomical,’’ with data acquisition rates rapidly increasing and esti-

mated to approach one zettabyte per year by 2025 (Stephens

et al., 2015). This progress has led to exciting new ‘‘atlas’’ pro-

jects, for example, the Tabula Muris, a compendium of single-

cell transcriptomic data from 20mouse organs and tissues (Tab-

ula Muris Consortium et al., 2018). Such projects stand to be

further expanded by the incorporation of other single-cell

data—including, for example, protein expression, lineage

mailto:mcovert@stanford.edu
https://doi.org/10.1016/j.cels.2021.05.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2021.05.014&domain=pdf


large-scale predictive models

experimental
interrogation

data
curation

model building
& integration

accelerated
computation

model
validation

analysis &
visualization

collaboration &
community

Figure 1. Numerical weather prediction and
comprehensive mechanistic modeling of
cells are complementary, interdisciplinary
challenges
The seven areas connected in a circle were identi-
fied in ‘‘the future of whole-cell modeling’’ (Macklin
et al., 2014) as necessary areas of expertise for
modeling of cellular systems but are also highly
relevant to weather forecasting. Two actual visuali-
zations of large-scale simulations are shown in the
middle. On the left is a screenshot of Earth Null-
school, an interactive visualization of simulations
which predict global weather patterns (surface wind
is shown in green) (https://earth.nullschool.net/,
2020). On the right is a visualization of a ‘‘whole-cell
population’’ colony simulation, where every cell is an
instantiation of our E. coli model (Skalnik et al.,
2021). The heterogeneity of protein expression for a
single gene across the colony is depicted in green.
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information, and chromatin state (Stuart and Satija, 2019). New

innovations in cellular and molecular imaging add further com-

plementary observations to the mix, from cryoelectron tomogra-

phy (Turk and Baumeister, 2020) to super-resolution imaging to

light-sheet microscopy (Lemon and McDole, 2020; McDole

et al., 2018). Live-cell imaging studies bring dynamic resolution

to single-cell measurements as cellular behaviors emerge over

time (Jekni�c et al., 2019), including within more sophisticated

cellular structures (Pokrass et al., 2020), and the palette of sen-

sors and perturbation techniques continues to expand (Lee et al.,

2020). All of the above is facilitated by new, cutting-edge analysis

techniques (Moen et al., 2019; Stuart and Satija, 2019; Wang

et al., 2020).

Taken together, these existing studies and technologies have

put the biological sciences in a situation parallel to the atmo-

spheric sciences: vast amounts of data, arriving from a variety

of disparate sources, modalities, and groups, with increasing

amounts generated every day.

...BUT FURTHERPROGRESSALSODEPENDSONNOVEL
ANALYTICAL AND MODELING TOOLS

In the 1895 first volume of the journal Science, meteorologist

Cleveland Abbe called for a new path forward in predicting the

weather: ‘‘It is not enough to know what the conditions have

been and are, but we must know what they will be, and why

so. further progress in meteorology demands a laboratory

and the consecration of the physicist and the mathematician to

this science’’ (Abbe, 1911).

Advances in measurement technology will also undoubtedly

play a major role in future weather forecasting; however, Abbe’s

assertion remains true today. Successful predictions require not

only a critical mass of data but also a mechanistic framework

which assimilates and unites them. Importantly, such a frame-
work enables both interpolation (e.g.,

weather estimates for remote areas which

may not have state-of-the-art observation

capacities) and extrapolation (prediction

of future conditions) (Blum, 2019).

Abbe’s assertion can also be applied

directly to the biological sciences, which
are experiencing an explosion in measurement technology, as

described above. The bottleneck in developing a fundamental un-

derstanding of biological systems may not be the generation of

more data, but instead the assimilation and integration of that

data in ways that catalyze novel insight and understanding. This

was underscored by a notable study in which a MOS 6507 micro-

processor (perhaps best known as the processor in Atari’s video

game system) was used as a model neurological system (Jonas

and Kording, 2017). The scientists attempted to understand three

complex ‘‘behaviors’’—the ability to run three well-known video

games (DonkeyKong, Space Invaders, and Pitfall)—by performing

experiments that were directly analogous to neuroscientific exper-

iments. For example, microscopy was used to determine the pro-

cessor’s ‘‘connectome’’ (the wiring connections between transis-

tors); comprehensive ‘‘lesioning experiments’’ were performed to

infer whether or not a given transistor was involved in a particular

behavior; ‘‘spike trains’’ (patterns of ‘‘off-to-on’’ transitions for

each transistor) were analyzed during a particular behavior; and

the like. Although, unlike in the brain, these studies could be per-

formed with comprehensiveness and perfect precision, and even

though the processor is already completely understood, the re-

sults of every experiment was found to be insufficient to under-

stand the processor in a meaningful way. In fact, the results

were often quite misleading, for example, by suggesting that

certain parts of themicroprocessor were ‘‘Space Invaders transis-

tors’’ or ‘‘Donkey Kong transistors’’ when in fact none of the tran-

sistors had been specifically coded for such a purpose (Jonas and

Kording, 2017). The authors concluded that ‘‘the problem is not

that neuroscientists could not understand a microprocessor, the

problem is that they would not understand it given the approaches

they are currently taking’’ and suggested a need for better theory

and data analysis, in addition to novel experimental approaches.

All of this is to say that the ‘‘consecration of the physicist and

the mathematician’’ will be required in biology as well. In fact
Cell Systems 12, June 16, 2021 489

https://earth
http://nullschool.net/


ll
Perspective
such consecration has a storied history, from the early biochem-

istry work of Maud Leonora Menten and Leonor Michaelis in

characterizing a natural invertase enzyme in 1913 (Gunawar-

dena, 2012a; Michaelis and Menten, 2013); to Salvador Luria

and Max Delbr€uck’s landmark study of bacterial mutation rates

and how they impacted susceptibility to bacteriophage infection

in 1943 (Luria and Delbr€uck, 1943); to Alan Hodgkin and Andrew

Huxley’s pioneering work to understand ionic currents and ac-

tion potentials in the axons of giant squid in 1952 (Hodgkin and

Huxley, 1952); and many others. Modern systems biology arose

as a field at around the turn of the millennium; one of its stated

goals was to build more comprehensive models of cellular sys-

tems (Kitano, 2002). Network motifs or larger circuits, whether

identified in nature (Brandman et al., 2005; Hoffmann et al.,

2002; Milo et al., 2002) or designed de novo (Elowitz and Leibler,

2000; Gardner et al., 2000), were characterized and modeled to

identify key properties of these systems. Since that time, quan-

titative modeling of bacterial and eukaryotic cellular systems

has become ever more sophisticated and wide-reaching (Braniff

and Ingalls, 2018; Hughey et al., 2010).

However, comparison of the modeling approaches used in

meteorology and biology also reveals a significant difference be-

tween these fields. In the case of meteorology, the models are

based on numerical solutions of the following well-established

physical equations: Navier-Stokes, mass continuity, the first

law of thermodynamics, and the ideal gas law. In contrast, the

computational models used to describe cellular processes

reflect many levels of abstraction (Ideker and Lauffenburger,

2003), from all-atom molecular dynamics simulations of cellular

cytoplasm (Oliveira Bortot et al., 2020) and stochastic simula-

tions (Roberts et al., 2011) on the more detailed side, to Boolean

networks on the more abstracted side (Covert et al., 2004). The

choice of modeling approach for a particular system is therefore

often practical and subjective, balancing highly disparate factors

against each other. Computational biologists may need to simul-

taneously consider the particular goals of a study together with

the accessibility or quantitativeness of any relevant data, as

well as the runtime required by different approaches, for

example. This difference complicates efforts to coordinate

research across labs.
STUDYING THE SYSTEMASAWHOLENOTONLY LEADS
TO INSIGHTS ON THE GLOBAL SCALE, BUT MAY ALSO
BE THE BEST PATH TO UNDERSTANDING INDIVIDUAL
COMPONENTS

A major transition in weather prediction occurred with the inven-

tion of the telegraph, which enabled news about the weather to

travel faster than the weather itself. This enabled scientists (for

example, at the Smithsonian Institution) to collect weather ob-

servations from many regions simultaneously, and for the first-

time weather was correctly understood as a complex, global en-

tity rather than simply a local phenomenon. Current weather

models illustrate this point even more clearly, as local observa-

tions are incorporated to produce multiregional effects that can

impact the entire globe.

Given the high level of complexity for both cellular and atmo-

spheric systems, one might intuit that biological models must

also grow more inclusive and holistic over time. This will require
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a dramatic increase in model scope and scale, as most compu-

tational models in biology are much smaller than their weather

counterparts (Hughey et al., 2010). However, unfortunately there

has been a stigma associated with larger-scale models, in part

derived from an anecdote related by Enrico Fermi in which

‘‘my friend Johnny von Neumann used to say, with four parame-

ters I can fit an elephant, and with five I can make him wiggle his

trunk’’ (Dyson, 2004). While others have trusted this oft-cited

assertion, to the point of actually plotting a cartoon elephant

with the allowed parameters (Mayer et al., 2010), Fermi’s state-

ment is preposterous in the context of efforts such as weather

prediction, in which the model involves ‘‘a system of nonlinear

differential equations at about half a billion points per time step

between the initial time and weeks to months ahead, and ac-

counting for dynamic, thermodynamic, radiative and chemical

processes working on scales from hundreds of meters to thou-

sands of kilometers and from seconds to weeks’’ (Bauer et al.,

2015). Similar situations exist in other fields, including micropro-

cessor design and of course, complex biological systems—both

of which also require thousands of parameters andmore in order

to be performed properly.

Accordingly, we and others have been working toward the

‘‘grand challenge’’ of developing whole-cell modeling technolo-

gies (Tomita, 2001). This effort spans nearly 40 years, beginning

with the first physiology-based models (Domach et al., 1984), to

kinetics-based descriptions (Jahan et al., 2016; Khodayari and

Maranas, 2016; Tomita et al., 1999) to the development of

large-scale models of cellular metabolism (Gu et al., 2019), and

the integration of these models with other data or cellular pro-

cesses (O’Brien et al., 2015; Øyås and Stelling, 2018).

Inspired by the extraordinary work that went before, our lab re-

ported the first model of a bacterium that took all known gene

functions explicitly into account (Karr et al., 2012). This model,

of the simplest culturable bacterium Mycoplasma genitalium,

was actually a highly integrated composite model with twenty-

eight different submodels, representing the major biological

functions in this organism. (There weremodules for transcription,

translation, replication, and metabolism, for example [Gunawar-

dena, 2012b]). After this model was published, we changed our

focus to Escherichia coli (Macklin et al., 2020), a much more

complex organism with greater importance to science, medi-

cine, and industry, and we continue to work (and invite all to

join us) on the E. coli whole-cell modeling project (M.W.C., un-

published data).

Hundreds (M. genitalium) to tens of thousands (E. coli) of pa-

rameters have been obtained from the literature and incorpo-

rated into thesemodels, enabling simulations of cellular behavior

based on molecular and physiological measurements generated

by hundreds of labs over many decades. The most exciting

application of whole-cell modeling is the ability to predict global,

whole-system behaviors, which can be explained mechanisti-

cally based on such measurements. Thus, we were encouraged

to see that our simulations were able to predict larger-scale

physiological behaviors, with insights related to chromosomal

occupancy, cell-cycle duration, and cellular energetics in

M. genitalium (Karr et al., 2012), and a critical role for subgenera-

tional gene expression in E. coli (Macklin et al., 2020). These bio-

logical insights would have been extremely difficult to identify

without a large-scale model, and the experimental validation of
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these and other complex model predictions (currently in prog-

ress) promises to be a watershedmoment for large-scale cellular

modeling as a field.

Interestingly, although both large-scale weather and cellular

models can rightly be thought of as holistic, they are also funda-

mentally reductionist, in that they explicitly account for smaller-

scale and local phenomena. Such models may therefore be

thought of as a mechanistic intertwining of the local and the

global, the molecular and the cellular, the genotype and the

phenotype—the system and its component parts. This is in

contrast to most modeling based on machine learning ap-

proaches, in which the factors causing a particular behavior or

observation are typically abstracted, making it difficult to deter-

mine causation (Ching et al., 2018; Yang et al., 2019).

Thus, it is not only that knowing the components and their in-

teractions enables us to predict global behaviors but also that

global observations enable predictions about the component

parts. Returning to the impact of the telegraph, ‘‘the ability to

know the weather in many places at one time was the first step

toward knowing the weather in one place at many times’’

(Blum, 2019). Patterns and dynamics (for example, a ‘‘nor’eas-

ter’’) could now be identified, enabling residents of one region

to guess at their future weather based on the present or past

weather in another region. In other words, a global understand-

ing of the overall system enabled local insights that would not be

possible by considering the local system alone—even if studied

in great detail.

This point was originally less intuitive to us, and so we were

surprised by the capacity of our cellular models to predict

behavior at the molecular scale, especially as we subsequently

verified these predictions experimentally. In the case of

M. genitalium, comparing model simulations to growth-rate

measurements for a complete library of single-gene disruption

strains led to the model’s successful prediction of kinetic rate

constants (kcat) for three metabolic enzymes, which were char-

acterized after and as a direct result of the simulation results

(Sanghvi et al., 2013). For E. coli, comparing the model simula-

tions to an independent proteomics dataset strongly suggested

that certain of the model’s protein-decay rates were incorrect;

subsequent experiments verified this prediction as well. Further

investigation of the CdsA protein in particular bridged the gap

between the global and the local, as its decay rate was shown

to be orders of magnitude lower than previously proposed –

and this had a direct impact on the model’s predicted growth

rate (Macklin et al., 2020).

TACKLING THE CHALLENGES POSED BY COMPLEX,
NONLINEAR SYSTEMS REQUIRES INNOVATIVE
MATHEMATICAL APPROACHES

Both weather systems and biological systems are highly

nonlinear, which challenges any efforts at model-based predic-

tion. The recognition of atmospheric nonlinearity—and in partic-

ular, how a fully deterministic system could nonetheless produce

sudden and surprising behaviors that seemed almost random—

led to the development of new mathematical ideas, including

chaos theory (Slingo and Palmer, 2011). Chaos theory has proven

that nonlinearity can make a system’s long-term behavior funda-

mentally unpredictable, since very small differences in initial con-
ditions can lead to drastic differences in model output. Because

such differences are not large enough to be distinguished bymea-

surement, nonlinear models can produce equally plausible out-

comes that are nonetheless highly divergent. This realization led

to the development of new methods, including for example data

assimilation, to better estimate initial states, and ensemble-based

approaches, which can calculate the variability in predicted out-

comes based on the uncertainty of those states. With regard to

data assimilation, weather models run based on initial conditions

that are imperfectly known, and physical processes that are

imperfectly represented. As a result, errors will accumulate in

the model as it runs, decreasing the value of its forecast. Data

assimilation encompasses a suite ofmethods tomaintain forecast

utility over time by incorporating novel observational data into

these models (Bannister, 2017). In ensemble-based approaches

to weather prediction, a weather system is simulated many times

with slightly varying initial conditions, parameters, and numerical

representations. Ensemble-based and probabilistic approaches

have enabled more robust estimations, not only of the future

weather but also of the uncertainty or reliability of the predictions

themselves (Gneiting and Raftery, 2005). Integrating both data

assimilation and ensemble modeling into numerical weather pre-

diction has dramatically improved the forecasting quality (Bauer

et al., 2015).

While cells and the atmosphere are both multiscale, complex,

nonlinear systems, certain aspects specific to biology compli-

cate the challenge of modeling systems-level behavior. One

complicating factor, described in detail above, is that our under-

standing of biological systems spans a wide range of levels of

abstraction. Another fundamental challenge is the ubiquity of

biological noise, which can manifest itself in the thermal fluctua-

tions within a cell (Elowitz et al., 2002), bacterial persistence in

the presence of antibiotics (El Meouche and Dunlop, 2018), or

kernels on an ear of corn (McClintock, 1950). Biological systems

also exhibit extensive nonlinearity, which suggests the possibility

of chaotic behavior (Mackey and Glass, 1977). In this context,

however, it is interesting to note that certain biological architec-

tures also appear designed to support robustness, pushing an

otherwise noisy system to an almost deterministic response

(Barkai and Leibler, 1997; Brandman et al., 2005). Other circuits

appear to exploit biological noise in order to produce differenti-

ated phenotypes (Ahrends et al., 2014; Losick and Desplan,

2008) and in some of these cases even appear to preserve a

certain amount of variability as a critical component of their

behavior (Hughey et al., 2015).

Thus, whereas the weather models are deterministic with ho-

mogeneous representations across regions, but highly

nonlinear, whole-cell simulations must be heterogeneous and

stochastic, in addition to being nonlinear. To respond to these

challenges, theoretical and systems biologists have grappled

with stochasticity, heterogeneity, and nonlinearity. Using gene

expression as an example (Hortsch and Kremling, 2018; McA-

dams and Arkin, 1997), stochastic simulations have been used

to represent a variety of systems, including the repressilator (Elo-

witz and Leibler, 2000), the bacteriophage lambda lysis/lysogeny

decision circuit (Arkin et al., 1998), NF-kB regulation (Tay et al.,

2010), the lac operon (Roberts et al., 2011) andmultiple antibiotic

resistance networks (Garcia-Bernardo and Dunlop, 2013) in

E. coli, and transcriptional bursting (Chong et al., 2014).
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Whole-cell modeling also presents particular modeling and

analytical challenges which must be addressed in order to un-

derstand, predict, and determine proper inputs and outputs

(Babtie and Stumpf, 2017; Goldberg et al., 2018). Because

whole-cell simulations are based on a single cell, and because

some of the functional submodules have probabilistic compo-

nents (including mRNA transcription, for example), each simu-

lated cell has a different phenotype than the rest. As a result,

any key model prediction also depends on an ensemble of sim-

ulations. Ensemble-based modeling also provides a framework

for whole-cell models to systematically estimate parameter

values at scale—for example, via massive combinatorial param-

eter perturbations and large-scale full factorial experimental de-

signs for our simulations, as we demonstrated in the E. coli

model (Macklin et al., 2020).

The state of an individual cell is also both highly variable and

unspecified, which means that data-assimilation techniques

will likely be paramount for improving prediction quality for initial-

izing a whole-cell model. The E. coli model initialized the counts

and properties of every molecular species using available omics

data and a statistical model that, on average, fits experimental

data. Although novel experimental measurements have been

used to update models and improve predictions, in general,

data-assimilation techniques are relatively underdeveloped in

cellular modeling and represent an exciting area to learn from nu-

merical weather prediction techniques.

Large-scale prediction is fundamentally an integrative,
multidisciplinary effort
The wide range of expertise needed to build comprehensive

models of highly complex processes (see Figure 1) requires

interdisciplinary and collaborative efforts. Weather observation

and numerical weather prediction has fostered such collabora-

tion since the 1950s, with agreements and symposia to pool re-

sources and information across the globe (Benjamin et al., 2019).

Governments and international organizations play amassive role

in these efforts, for example, by providing investment and fund-

ing support to catalyze scientific breakthroughs and business

ventures, developing standards to ensure that data can be

shared most efficiently and supporting low- or middle-income

countries by making these data freely available and accessible

(Thorpe and Rogers, 2018). Without such massive and coordi-

nated efforts, numerical weather prediction would be nowhere

near where it is today.

Biological modeling requires and deserves a similar effort. No

individual lab can possibly hold either all of the areas of expertise

in a state-of-the-art capacity simultaneously or the sheer number

of people required to maintain such a large effort; thus, the con-

struction, application, and dissemination of large-scale cellular

and multicellular models is likely to depend on a large global

community, comparable with what has already been achieved

in atmospheric modeling and weather prediction. Interestingly,

such a community was proposed several decades ago by

none other than Sydney Brenner and Sir Francis Crick, who out-

lined a global, multidisciplinary effort called Project K (presum-

ably referring to the K12 strain of E. coli) to obtain ‘‘a complete

solution of E. coli’’ (Crick, 1973). Project K went so far as to

call for a central laboratory to handle shared needs of the com-

munity, such as producing and distributing mutant strains,
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developing techniques and instrumentation to automate experi-

ments, and the like. Unfortunately, no global collaboration or

central laboratory was able to take hold, and from our own van-

tage point, the E. coli whole-cell modeling project remains very

much incomplete, with immediate needs in all of the areas high-

lighted in Figure 1. So, although research on E. coli continues to

progress, one can only speculate where we would be if Crick’s

advice—or the example of the meteorology community—had

been followed.

Other bacterial- and cell-type specific efforts have arisen and

must arise in the future. Brenner proposed not only Project K,

but follow-on projects L (bacteriophage lambda), M (mouse),

and of course N (nematode) (Brennen, 1975), the latter of which

is beginning to be realized via the OpenWorm group (Sarma

et al., 2018). Others are already working toward large-scale

models in humans (Szigeti et al., 2018; Thiele et al., 2020). There

have also been cross-cutting initiatives to facilitate collabora-

tion for any organism or project; for example, the challenge

posed by heterogeneity of mechanisms within biological sys-

tems has inspired the creation of standard modeling languages

(Keating et al., 2020) and integrative frameworks that combine

different mathematical models into unified representations (Ag-

mon et al., 2021). While these efforts are in their relatively early

stages, the weather community’s experience with prediction

strongly suggests that a larger and coordinated community

dedicated to the overall practice of large-scale biological

modeling would greatly accelerate any and all more specific

modeling efforts.

MOVING FROM PREDICTIONS TO DECISIONS

Numerical weather prediction for the entire globe occurs every

day, and forecasts are automatically compared and evaluated

against the corresponding weather observations for that day.

Themetrics for comparison aremany and varied, withmore tests

in active development (Bauer et al., 2015). Such frequent and

rigorous comparison drives improvement, and in recent years

(and thanks to many of the methods mentioned above), the fore-

casts have reached such a level of consistent accuracy that they

can be relied upon. This transition has catalyzed a shift in focus

frompredictions to decisions: when theweathermodels forecast

Hurricane Sandy, people began to evacuate.

Medicine and public health are also areas in which urgent,

high-stakes decisions must be made on an increasingly regular

basis. In some cases, such decisions have indeed involved the

use of predictive models. For example, modeling the dynamics

of HIV infection, both at the cellular scale (Perelson et al.,

1996) and the human population level (Blower et al., 2000),

have had a significant impact on the decisions on how to best

combat AIDS. Similarly, recent models of the COVID-19

pandemic have impacted country guidelines to minimize the

spread and impact of this disease (Edeling et al., 2021; Oyetunde

and Obiaderi, 2020). Just as noted with weather forecasting,

these models went beyond generating predictions to catalyzing

actionable decisions. However, validation is on a much longer

timescale and often less straightforward. For example, in the

Blower HIV model, which predicted the emergence of resistance

to antiretrovirals, new validation data emerged on the timescale

of two years (Blower et al., 2003).



Figure 2. Current potential interactions between models of cellular
systems and the Earth system
Whereas atmospheric models (toward the bottom), and biological models
(toward the top), have been largely developed in isolation from one another,
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Models of cellular systems present opportunities in driving de-

cision making that are largely separate from models related to

the atmosphere or public health, with the potential to accelerate

both biological discovery and design. This is because of the

ubiquity of perturbation in biological science research. In princi-

ple, any prediction made by a cellular model can be tested at the

bench, and the model can be evaluated by direct comparison.

Moreover, examination of model ‘‘failures’’—i.e., discrepancies

between model predictions and experimental observations—

can often lead to newmechanistic insights about the system un-

der study (Covert et al., 2004; Sanghvi et al., 2013). Large-scale

cellular modeling can also be applied to design. We and others

have spearheaded efforts intended to facilitate genome design

for synthetic biology (Purcell et al., 2013; Rees-Garbutt et al.,

2020). Others have shown the power of integrating quantitative

biological modeling and analysis for the metabolic engineering

of industrially relevant products (Jung et al., 2010), and at multi-

ple steps of a drug development process (Schoeberl et al., 2017).

Taken together, these studies crack open the door to a host of

future possibilities—and yet they are exceptional. Large-scale

cellular modeling has not yet completely crossed the threshold

from prediction to decision.
TOWARD THE FUTURE: THE GAIA MODEL?

On a final, more speculative note: Could whole-cell and whole-

Earth models eventually engage with each other? Developments

over the last several years have made this possibility more plau-

sible. For example, Earth system models are being developed

which build on the physical equations used to create weather

and climate models, but also include more explicit representa-

tions of chemical and biological processes (Bonan and Doney,

2018). Current Earth system models incorporate the biosphere,

modeling the effects of insect outbreaks, crop growth, wildfires,

and most notably for this perspective—plankton ecosystems,

and their interactions with oceanic bacteria. The specific repre-

sentations of these models are currently too coarse-grained to

enable detailed local predictions, but complementary ‘‘ecolog-

ical forecasting’’ (Dietze et al., 2018) and other mesoscale

models are arising, which can predict phenomena such as algal

blooms (Schultz et al., 2021), and thereby facilitate the parame-

terization required for more global models.

On the cellular-modeling side, although efforts to build

comprehensive whole-cell models are already providing us

with new insights about how and why cells behave the way

they do, one critical limitation of such models is their isolation

from other cells in the environment. Of course, in the real

world—from biofilms to tissues to organs and beyond—cells

interact in dynamic shared environments, and these interactions

can be as important in driving cellular behavior as are the
recent developments present the possibility for them to come together. Bio-
logical models can now span from the single-cell level, to the colony level with
many heterogeneous cells interacting in a shared environment, and to larger
models with multiple microbial species. Ecological forecasts already integrate
geological and biological processes—for example, with models of algal
blooms. Enabling these different kinds of models to interface with each other
could facilitate our understanding of the role oceanic microbes play in shaping
our climate. The superstructure and ecological forecast images are adapted
from (Dukovski et al., 2020) and (Schultz et al., 2021), respectively.

Cell Systems 12, June 16, 2021 493



ll
Perspective
molecular interactions within each cell. Several groups have

focused on modeling these interactions and the resulting popu-

lation behaviors (Dukovski et al., 2020; Koch et al., 2019; Norfleet

et al., 2020; Segre, 2014; Talman et al., 2019). Our group’s most

recent work also led to our first ‘‘whole-colony’’ models, where a

population of interacting cells in a shared environment was simu-

lated, and each cell was an instance of the most current snap-

shot of the E. coli model (Skalnik et al., 2021).

Given that modeling efforts now exist at these various scales,

and even occasionally overlap, one could therefore imagine an

exciting future effort which attempts to combine or interface

detailed molecular models of ocean bacterial populations

together with representations of their context in the ocean and

on the planet (Figure 2). Such efforts could lead to an increase

in our understanding of the role of microbial metabolism in

shaping our climate and also—given that protein evolution speed

has now been shown to depend on temperature—how this role

and these microbes may change over time as global tempera-

tures rise.
LAST WORDS

In summary, our forecast for the field is that an accumulation of

quantitative talent in the biological andmedical scienceswill pre-

cipitate a large-scale predictive capacity—across a spectrum

that reaches from individual bacterial cells to human populations

and ecological niches—that will in turn lead to a front of ‘‘blue-

sky’’ applications. The benefits accrued by developing, support-

ing, organizing, and deploying this talent for such applications

will likely, as we have seen in the atmospheric sciences, far

outweigh the costs.
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