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INTRODUCTION: The generation of biological
data is presenting us with one of the most
demanding analysis challenges the world
has ever faced, not only in terms of storage
and accessibility, but more critically in terms
of its extensive heterogeneity and variability.
Although issues associated with het-
erogeneity and variability each rep-
resent major analysis problems on
their own, the challenges posed by
both in combination are even more
difficult but also present greater op-
portunities. The problems arise be-
cause assessing the data’s veracity
means not only determining whether
the data are reproducible but also,
and perhaps more deeply, whether
they are cross-consistent, meaning
that the interpretations of multiple
heterogeneous datasets all point to
the same conclusion. The opportu-
nities emerge because seemingly
discrepant results across multiple
studies and measurement modal-
ities may not be due simply to the
errors associated with particular
techniques, but also to the com-
plex, nonlinear, and highly intercon-
nected nature of biology. Therefore,
what is required are analysis meth-
ods that can integrate and evaluate
multiple data types simultaneous-
ly and in the context of biological
mechanisms.

RATIONALE:Here, we present a large-
scale, integrated modeling approach
to simultaneously cross-evaluate mil-
lions of heterogeneous data against
themselves, based on an extensive
computer model of Escherichia coli
that accounts for the function of
1214 genes (or 43% of the well-annotated
genes). The model incorporates an exten-
sive set of diverse measurements compiled
from thousands of reports and accounting
for many decades of research performed
in laboratories around the world. Cura-
tion of these data led to the identification

of >19,000 parameter values, which we in-
tegrated by creating a computational model
that brings molecular signaling and regu-
lation of RNA and protein expression to-
gether with carbon and energy metabolism
in the context of balanced growth. A major

advantage of this modeling approach is
that heterogeneous data are linked mech-
anistically through the simulated interac-
tion of cellular processes, providing the
most natural, intuitive interpretation of
an integrated dataset. Thus, this model
enabled us to assess the cross-consistency

of all of these datasets as an integrated
whole.

RESULTS: We assessed the cross-consistency
of the parameter set and identified areas of
inconsistency by populating our model with
the literature-derived parameters and by
running detailed simulations of cellular life

cycles. Although anal-
ysis of these simulations
showed that most of the
data were in fact cross-
consistent, we also iden-
tified critical areas in
which the data incorpo-

rated in our model were not. These incon-
sistencies led to readily observable consequences,
including that the total output of the ribo-
somes and RNA polymerases described by
the data are not sufficient for a cell to re-
produce measured doubling times, that mea-

sured metabolic parameters are neither
fully compatible with each other nor
with overall growth, and that essen-
tial proteins are absent during the
cell cycle—and the cell is robust to
this absence. After correcting for
these inconsistencies, the model is
capable of validatable predictions
compared with previously withheld
data. Finally, considering these data
as a whole led to successful predic-
tions in vitro, in this case protein
half-lives.

CONCLUSION: Construction of a highly
integrative and mechanistic math-
ematical model provided us with an
opportunity to integrate and cross-
validate a vast, heterogeneous data-
set in E. coli, a process we now call
“deep curation” to reflect the mul-
tiple layers of curation that we per-
form (analogous to “deep learning”
and “deep sequencing”). By highlight-
ing areas in which studies in E. coli
contradict each other, ourwork suggests
lines of fruitful experimental inquiry
that may help to resolve discrepan-
cies, leading to both new biological
insights and a more coherent under-
standing of this criticalmodel organism.
We hope that this work, by demon-
strating the value of a large-scale in-
tegrative approach to understanding,
interpreting, and cross-validating large
datasets, will inspire further efforts to

comprehensively characterize other organisms
of interest.▪
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Integrating experimental and computational components,
scientists constructed a model of E. coli. Although the model
described here resides as software (freely available on GitHub), the
model depicted in the photo above is composed of Corning
plasticware and filter tips, network cables, and Mac accessories.
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The extensive heterogeneity of biological data poses challenges to analysis and interpretation.
Construction of a large-scale mechanistic model of Escherichia coli enabled us to integrate and
cross-evaluate a massive, heterogeneous dataset based on measurements reported by various groups
over decades. We identified inconsistencies with functional consequences across the data, including
that the total output of the ribosomes and RNA polymerases described by data are not sufficient for a
cell to reproduce measured doubling times, that measured metabolic parameters are neither fully
compatible with each other nor with overall growth, and that essential proteins are absent during the cell
cycle—and the cell is robust to this absence. Finally, considering these data as a whole leads to
successful predictions of new experimental outcomes, in this case protein half-lives.

T
he generation of biological data is rap-
idly presenting us with one of the most
demanding data analysis challenges the
world has ever faced (1), not only in
terms of storage and accessibility, but

perhaps more critically, in terms of its ex-
tensive heterogeneity and variability (2). With
respect to heterogeneity, study of a biological
system of interest typically involves many di-
verse measurements, from lower-throughput
blotting techniques to high-throughput sequence-
and spectrometry-based technologies and be-
yond. In terms of variability, it is often the
case that studies produced independently from
each other report results that seem to be at
odds with one another. This is most readily
apparent when studies of the same system
perform the same measurements but obtain
different results, an issue that has led high-
profile journals to question the reproducibil-
ity of results in multiple scientific fields (3, 4).
Although issues associated with heteroge-

neity and variability each represent major
analysis problems on their own, the chal-
lenges posed by both in combination are even

more difficult—but also present greater op-
portunities for discovery. The problems arise
because assessing the data’s veracity means
not only determining whether the data are
reproducible (i.e., does a repeated study pro-
duce the samemeasured outcomes?) but also,
and perhaps more deeply, whether they are
cross-consistent, meaning that the interpre-
tation of multiple heterogeneous datasets all
points to the same conclusion. The opportu-
nities emerge because seemingly discrepant
results across multiple studies and measure-
ment modalities may be due, not just to the
error associated with a technique or the hu-
man hands performing it, but also to the com-
plex, nonlinear, and highly interconnected
nature of biology. In such cases, the identifi-
cation of data discrepancy would be a strong
indicator for future insight and discovery.
To this end, the goal of this project was to

cross-evaluate a massive, heterogeneous set of
measurements that have been reported in the
model organism Escherichia coli in thousands
of studies and by hundreds of laboratories
over the past several decades. Determining
the cross-consistency between these various
measurements requires an understanding of
the known or presumed biological relation-
ships that connect them. Thus, we adopted a
mathematical approach that can represent
these relationships mechanistically while simul-
taneously accommodating many millions of
heterogeneous data points. Efforts to model
cell behavior at the cell scale span several de-
cades (5–12). We previously reported a mod-
eling approach that was capable of integrating
all of the known functions in the simplest cul-
turable bacterium,Mycoplasma genitalium (13).

A major advantage of this “whole-cell”mod-
eling approach is that heterogeneous data are
linked mechanistically through the simulated
interaction of cellular processes, providing the
most natural, intuitive interpretation of an
integrated dataset (14). The M. genitalium
model successfully reproducedmanymeasured
data and even predicted previously unmea-
sured parameters that were subsequently
verified experimentally (15). Construction of
this model also enabled us to cross-evaluate
data and identify discrepancies. As a relatively
simple but illustrative example, the DNA con-
centration per cell measured inM. genitalium
was only a fraction of the DNA mass required
to make up the genome sequence (13). This
led us to favor the genome sequence data in
determining the parameters governing DNA
concentration.
E. coli has nearly 10 times more genes than

M. genitalium, comprises ~50 times as many
molecules, can readily grow in a wide variety
of environmental conditions, and exhibits ex-
tensive self-regulation and control, all of which
pose challenges to whole-cell modeling. The
model described in this report only accounts
for a subset of these genes, environments, and
functions. However, one of the most exciting
aspects of modeling E. coli on a large scale is
the enormous effort in data generation that
has already been performed. Thus, whereas
only 27.5% of the parameter values in our
M. genitalium model were actually derived
frommeasurements using that organism, 100%
of the values incorporated into the model that
we describe here were derived directly from
E. coli. This provided us with an unprec-
edented opportunity to assess the literature
against itself.
Our overall approach is depicted in Fig. 1

and movie S1. We compiled an extensive set
of high- and low-throughput measurements
from databases and published reports to iden-
tify datasets that characterize mRNA and pro-
tein expressionunder a variety of environmental
conditions (some of which we generated for
this study; see the materials and methods),
mRNA and protein half-lives, ribonuclease
kinetics, gene locations, transcription factor–
binding sites, dissociation constants for pro-
teins bound to DNA-binding sites or other
cellular and environmental ligands, transla-
tional efficiencies of mRNA transcripts, chem-
ical reaction stoichiometry, enzyme kinetic and
substrate transport rates, internal metabolite
concentrations, ribosome andRNApolymerase
concentrations and elongation rates, the rate of
DNA initiation and other cell cycle parameters,
and other physiological properties (e.g., growth
rates and chemical composition of the cell) (see
the supplementary materials for a complete
description of included data).
Curation of these data led to the identification

of >19,000 parameter values, which are listed
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Fig. 1. Large-scale, integrated modeling
approach to simultaneously cross-evaluate
millions of heterogeneous data. The data were
collected from the primary literature and key
databases, and in some cases were also generated
as part of this study. Subsequent data curation
and analysis led to the determination of 19,119
parameter values. We then incorporated these
data into a large-scale computational model
of E. coli gene expression, metabolism, and
growth based on a foundation of >10,000
interdependent mathematical equations that were
then transformed into appropriate computational
representations of biological processes. Color
coding is used to connect terms in these
equations to the data that produced their
parameter values. This unified model was then
used to produce fully integrated simulations,
with output as shown at the bottom. See fig. S1,
movies S1 and S2, and the supplementary
materials for more details. Full details of the
analysis required to generate this figure, as well as
a pointer to the generating code, can be found in
the supplementary materials, section 1.2.
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by category in table S1 anddescribed indetail in
the GitHub repository for our model (https://
github.com/CovertLab/WholeCellEcoliRelease).
To compile these values, we created a compu-
tational model that brings RNA and protein
expression together with carbon and energy
metabolism in the context of balanced growth.
These datasets are integrated mathematically,
beginning with a system of >10,000 mathe-
matical equations schematically illustrated in
Fig. 1 [we used ordinary differential equations
(ODEs) here as a reduced representation of the
actual model, the implementation of which is
more complex; for details, see the supplemen-
tary materials]. Functionally, 1214 genes (or
43%of thewell-annotated genes) were included
to represent these processes, which required
severalmajor improvements over our previous
work in M. genitalium not only in terms of
modeling but also software improvements in
run time and accessibility (for details, see the
supplementary materials). For this study, the
model–data comparisons were examined un-
der conditions of exponential growth in three
experimentally characterized environments:
minimal medium (M9 salts plus glucose un-
der aerobic conditions), richmedium (minimal
medium plus all amino acids), and minimal
anaerobic medium.
We assessed the cross-consistency of the

parameter set as a whole and identified areas
of inconsistency by populating ourmodel with
these literature-derived parameters and by
running detailed simulations of cellular life
cycles. In the analysis of these simulations,
we identified several critical areas in which
the data contributing to these models were
not cross-consistent. These inconsistencies led
to readily observable consequences. Moreover,
by incorporating these findings, we constructed
a functional and predictive model that produced
simulation output, as shown in Fig. 1, fig. S1,
and movie S2.
The first inconsistency we identified was

that the total output of the ribosomes and
RNA polymerases (as derived from the in-
tegrated datasets) was not sufficient for the
simulated cell to reproduce measured growth
rates. The overall growth of the cell depends
on the production of protein, which in turn is
largely governed by these twomajor complexes,
the cell’s mRNA and protein synthesis machin-
ery. The ribosomal content of the cell has been
measured or estimated for different growth
rates, as have the expression and half-lives of
the ribosomal RNA and protein components
(11, 16, 17), their associated translational ef-
ficiencies (18), and the stoichiometry of the
functional complex (19). The expression and
half-lives of the RNA polymerase subunits
has also been measured or estimated (11, 16).
When these measurements were integrated
into our simulation, the resulting median
doubling time for our simulations was 125 min,

compared with the 44 min measured exper-
imentally for cells growing on glucose mini-
mal medium (Fig. 2A). Thus, the doubling
time measurements and the measurements
related to ribosomal and/or RNA polymerase
output appeared to be inconsistent.
To further dissect this inconsistency, we

performed a sensitivity analysis to determine
which parameters weremost likely to have an
impact on the doubling time. We ran 20,000
simulations, each for 10 s of simulation time,
in which 10% of the parameter values were
randomly chosen and their value increased or
decreased by fivefold (also chosen at random).
To cause an observable impact, it was neces-
sary to vary many parameter values at once
because there are so many interaction effects
between parameters. After the growth rate
was determined at the end of each simulation,
the effect of a particular parameter on growth
rate was determined by finding the average
growth difference between the cases in which
the parameter was raised and when it was
lowered and then assessing each parameter’s
individual effect in the context of the total
distribution of parameter effects. The top hits
from our analysis involved parameters related
to ribosomal and RNA polymerases, RNAses,
and a metabolic enzyme encoded by the cdsA
gene (Fig. 2B).
On the basis of these findings, we first con-

sidered changing parameters related to the
expression of ribosomes, RNA polymerases,
and RNAses (the enzyme cdsA is considered
in more detail below). When increasing the
expression of one protein, the expression of
all other genes must be decreased to main-
tain the total amount of mRNA and protein
per cell at their experimentally measured val-
ues. Thus, we used an iterative parameter
estimation approach based on ODEs that
calculates the amount of protein produced
from the ribosomal and RNA polymerase
content at a given growth rate (see the ma-
terials and methods). Our results showed
that increasing the RNA polymerase, ribo-
somal, or RNAse expression alone was not
sufficient to lower the doubling time to mea-
sured values (Fig. 2C). However, an increase
in the expression for both RNA polymerases
and ribosomes did enable us to simulate an
accurate doubling time (Fig. 2D). The new
polymerase and ribosome calculations matched
well with estimates of expression [compiled
in (20)] that were not used to create our
model (Fig. 2E).
Although these results supported the hy-

pothesis that the expression of RNA poly-
merases and ribosomes was not adequately
captured by the initial parameters fed into
the model, it was not clear which parameters
were most likely to be problematic. Thus, we
evaluated each parameter contained in our
RNA polymerase and ribosomal expression

equations, grading them on the following
three criteria: (i) literature reproducibility,
meaning that the parameter value could be
supported by independent measurements;
(ii) whether changing the parameters would
lead to an adequate change in the simulated
doubling time; and (iii) whether the simu-
lations performed in (ii) also matched the
abundances of ribosomes and RNA poly-
merases from Fig. 2E (20). This analysis (de-
tailed in figs. S2A and S2B) revealed that the
transcript synthesis probabilities of genes that
produce subunits of RNA polymerases and
ribosomes were the most favorable parame-
ters to change because they were relatively
variable between experiments (Fig. 2F) and
had a strong enough effect on the doubling
time (Fig. 2D) andprotein abundances (Fig. 2G).
Thus, we calculated new gene transcription
probabilities for RNA polymerase and ribo-
somal subunits basedon themeasureddoubling
time rather than on global mRNA measure-
ments; these new transcription probabilities
are the only changes to the data that continue
to the rest of this study (table S2A). In total,
the production of all RNA polymerase genes
had to be increased by roughly twofold to
recapitulate measured growth rates (see table
S2B for all changes to expression parameters).
Ribosomal gene expression wasmore complex;
although some genes required an increase in
the production rate greater than threefold,
the expression of other subunits was actually
decreased. Accommodating these changes fur-
ther required a global decrease in production
rate (for all other nonribosome and non–RNA
polymerase genes) to ~89% of their original
values to maintain the overall RNA mass in
the cell. These adjustments led to simulated
doubling times that were consistent withmea-
surements on the glucose minimal aerobic
medium (Fig. 2D). Similar analyses were
performed for the other two environments;
the final simulations in all three simulated
environments were consistent, not only with
doubling times (fig. S2C), but also with other
measurements including RNA mass per cell,
ribosome elongation rates, stable RNA syn-
thesis rates, and the average number of DNA
replication origins per cell at the time of
replication initiation (Fig. 2H) (21). The final
simulations could also reproduce the linear
relationship between the RNA/protein mass
ratio and the growth rate that was previously
observed for cells growing in different envi-
ronments (22) (fig. S2D). Finally, the simu-
lation output also showed that in fast-growing
cells, the cell mass added over the life cycle
was uncorrelated with the initial cell mass (a
phenomenon referred to as “adder” behav-
ior), whereas for slower-growing cells, the
added and initial cell masses were correlated
(“sizer” behavior) (fig. S2E), in agreement with
recent reports (23–26). We concluded that
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modifying the parameters related to the ex-
pression of certain ribosomal subunits, together
with a global increase in RNA polymerase ex-
pression, caused our simulations to better reflect
multiple physiological observations.
The secondmajor discrepancywe found con-

cerned the parameter values that determine
the activity and output of E. coli’s metabolic
network. These are the kinetic parameters of
each biochemical reaction, as well as the pa-
rameters related to gene expression for each
metabolic enzyme. Taken as a whole, these
parameter values must be consistent with
each other such that the metabolic network
can support mass and energy demands with-
out unstable pooling or depletion of interme-
diate metabolites. In practical terms, this means
that the chemical composition of a cell or the
metabolic demandon the cell has tobebalanced
with the supply provided by the metabolic
network.
Metabolism is probably the most thoroughly

characterized network in E. coli (8, 27, 28). In
our model, a metabolic networkmodel derived
from the EcoCyc database (29) is represented
using an expansion of flux balance analysis
(FBA), which uses an optimization strategy
to predict metabolic network behavior even
when few parameters are known (30). To add
kinetic information to thismodel, we searched
through the literature—thousands of studies
in all—and identified 639 relevant kinetic pa-
rameters governing the activity of 404 bio-
chemical reactions in the metabolic network.
Whereas traditional FBA is based on an ob-
jective function that serves tomaximize biomass
concentration in fixed relative proportions, our
method uses an objective function that is both
more flexible [and thus better suited to dynamic
simulations (31)] and explicitly incorporates
kinetic parameters, as well as metabolite and
enzyme concentrations. Specifically, we imple-
mented a two-term objective that penalizes un-
balanced growth or depletion of intermediate
metabolite concentrations (the metabolic cost
function) while also encouraging the flux
through the network to match that predicted
using the kinetic parameters described above
(the kinetic cost function). These two terms
are related by a weighting factor, which we
set to optimize a trade-off between including
kinetic data in the model while not compro-
mising cell growth (see fig. S3, A to F, and the
supplementary materials for complete details).
During this process, we noticed three areas

of inconsistency with regard to metabolism.
First, low expression of enzyme-encoding genes
could overconstrain the biochemical capacity
of the metabolic network. The only example
of this we found concerned the cdsA gene
product; in particular, we found that a sig-
nificant fraction of simulations would not
produce an adequate number of phospholipids
unless cdsA expression was artificially increased
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Fig. 2. Ribosomal and RNA polymerase output must be increased to support measured doubling
times. (A) Histogram comparing simulated doubling times (blue) with the experimentally determined
doubling time for aerobic growth on glucose minimal medium (orange line) with the model’s original
parameter values taken directly from the literature. Median simulated doubling time is 125 min (dashed black
line). (B) Sensitivity analysis outcome reported as the z-score (log-scale) of the difference in growth
rate for all simulations in which a given parameter was adjusted higher and all simulations in which a
given parameter was adjusted lower. Horizontal dashed lines represent a z-score cutoff for a P value < 0.05
that has been adjusted for multiple hypothesis testing of each of the parameters that were adjusted
(93% of the total parameters; see the supplementary materials for more details). Parameters are ordered by
their impact on the simulated cells’ growth rate along the x-axis; those having a significant z-score are
highlighted in orange and shown in more detail above and below the plot of all parameters. Parameters with the
largest positive correlation with model growth are listed across the top, and parameters with the largest
negative correlation are listed across the bottom. TE, translational efficiency; SP, RNA synthesis probability;
PD, protein degradation rate. (C and D) Histograms comparing simulated doubling times (blue) with the
experimentally determined doubling time for aerobic growth on glucose minimal medium (orange line), with
RNA polymerase, ribosome, and RNAse expression calculated from the known doubling time as independent
experiments (C) and with both RNA polymerase and ribosome expression calculated from the known
doubling time (D). Median simulated doubling times are shown as dashed black lines. (E) RNA polymerase and
ribosome abundances per cell as generated by the model in this study using the original (Fig. 2A) and new
(Fig. 2D) transcript synthesis probabilities compared with experimental data withheld from the model’s original
parameterization from (20). (F) Comparison of mRNA expression as measured by RNA-sequencing in this
study (TPM, transcripts per million) and from a previous microarray study (51). (G) Violin plots showing
distributions of RNA polymerase and ribosome cellular abundances from the simulations shown in Fig. 2D
compared with expected values determined experimentally (orange lines) (20). (H) Cellular properties
calculated from the simulations for three different environmental conditions compared with their counterpart
measurements reported in the literature (21). Error bars indicate SDs of each property calculated over the
1024 cells that were simulated for each medium. Full details of the analysis required to generate this figure, as
well as a pointer to the generating code, can be found in the supplementary materials, section 1.2.
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in the model (Fig. 3A). We investigated the low
expression of this gene further in the context
of the RNA-Seq (18), proteomics (32), and gene
essentiality datasets (33), the latter two of which
were not used in the construction of the model.
This comparison confirmed that mRNA expres-
sion of cdsAwas indeed low (which was further
confirmed by quantitative polymerase chain
reaction; fig. S3G) but was detectable at the
protein level, and also that it was an essential
gene. That this essential protein, identified in
Fig. 2B as one of the most important effectors
of simulation doubling time, was so lowly
expressed that its count dropped to zero in
the simulations was a puzzling contradiction
within our data (this is investigated further
below).
Having considered the constraints that low

cdsA expression imposed on the metabolic
network, we then turned to the constraints
imposed by kinetics and found that the kinetic
parameter set in its initial form was also in-
consistent with (i.e., unable to produce) known
cellular growth rates. Preliminary comparisons
between the simulations with and without
kinetics specifically identified the constraints
on succinate dehydrogenase and fumarate
reductase as preventing cell growth because
of inefficient carbon source utilization (Fig. 3B).
The constraints imposed on these enzymes by
their parameter values were therefore initially
removed from the model. However, comparing
our simulated metabolic flux outputs with a
metabolic flux validation dataset (34) that was
not originally used to create or parameterize
the model, we found that the simulation and
data were highly correlated, with the excep-
tion of two fluxes in the citric acid cycle:
those mediated by succinate and isocitrate
dehydrogenase (Fig. 3C). The identification of
succinate dehydrogenase as problematic in
both analyses, evenwith its kinetic constraint
removed, indicated that the kinetic parame-
ters for other reactions might also be respon-
sible for our observations. Thus, we performed
a global analysis in which every kinetic con-
straint was tested individually to determine
whether perturbing its value affected the flux
pathways through either succinate or isocit-
rate dehydrogenase. This analysis identified
six additional reactions as having potentially
problematic kinetic parameter values, for a
total of nine: nicotinamide adenine dinucleotide
(NADH) dehydrogenase, inorganic pyrophos-
phatase, cytosine deaminase, glutathione re-
ductase, phosphoserine aminotransaminase,
citrate synthase (Fig. 3D), succinate dehydro-
genase, fumarate reductase (Fig. 2B), and
isocitrate dehydrogenase (fig. S3H). A deeper
review of the literature revealed that isocitrate
dehydrogenase is part of a more complex con-
trol circuit, also involving glyoxylate reductase
(35), which has not been completely specified.
Because the full behavior of this circuit cannot

be described, the isolated kinetic constraints
for these reactions were removed from the
final model, leaving us with eight reactions
to consider in more depth.
To determine the main and interaction ef-

fects between the eight remaining kinetic con-
straints, we performed a full factorial, two-level
experimental design, with 256 (28) sets of simu-
lation runs. These runs simulated the result
of removing or including all of our identified
kinetic constraints in every possible combi-
nation. The combinations of constraints that
produced simulation outputs with strong
agreement with the fluxome (34), as well as
with the growth yield on glucose, were always
missing at least succinate dehydrogenase,
NADH dehydrogenase, inorganic pyrophos-
phatase, and glutathione reductase (Fig. 3E),
which indicated that the values for these ki-
netic constraints are inconsistent with the
rest of the data. We therefore removed the
constraints associated with these final four
reactions for a new round of simulations
and used the simulated fluxes and enzyme
expression data to calculate a new estimated
distribution for each kcat. Figure 3F shows the
kcat distributions for all 10 of the reactions
mentioned above in both our original and
final model, together with kinetic parameters
identified from the literature. In the cases of
citrate synthase, cytosine deaminase, and phos-
phoserine transaminase, the distributionswere
similar in the original and final model and
were acceptably close to measured values.
The remaining cases showed stronger differ-
ences between the original and final model.
We expected these differences in the cases of
glyoxylate reductase and isocitrate dehydro-
genase because of the complexity of these en-
zymes’ regulation. By contrast, for the cases
of fumarate reductase, glutathione reductase,
and inorganic pyrophosphatase, the new kcat
distributions were a better reflection of the
measured values. Finally, NADH dehydro-
genase and succinate dehydrogenase are both
membrane proteins, which are notoriously
difficult to characterize kinetically. For NADH
dehydrogenase in particular, a new kinetic
measurement not used in the construction
of the model was derived from a recent and
more sensitive technology (36). The resulting
kcat (highlighted with an arrow in Fig. 3F) was
~23-fold higher than previous measurements
and was closer to our new model kcat value
distribution. This supports others’ assertions
that the effective kcat values for membrane-
bound enzymes may be much higher in vivo
than measurements have reported (37), and
may therefore explain the discrepancies be-
tween experimental measurements and our
model distributions for these enzymes. In
total, we found that our new version of the
model was better at matching the measured
kcat values (Fig. 3F), as well as the growth

yield (Fig. 3G) and fluxome (Fig. 3H), and was
also able to reproducibly simulate balanced
growth (Fig. 3I).
Finally, beyond our growth and fluxome

comparisons, we also wanted to test the global
cross-consistency of all kinetic parameters
governing the activity of metabolic pathways
in the overall network. One way to achieve
this is by comparing the target flux values
included in the kinetic component of the ob-
jective function (calculated from both the
curated kinetic parameter values and the
simulation’s enzyme and metabolite con-
centrations) with the simulation output flux
values. As shown in Fig. 3J, 215 of 380 fluxes
were within 5% of the target flux. However,
there were also 33 fluxes with values of zero
in the simulations but with nonzero target
values; these values reflect the fact that the
model is not yet functionally complete, so the
resulting metabolites would be left unused.
We found that we could obtain higher, but
never perfect, consistency between the flux
values by increasing the weight on the ki-
netic component of the objective function,
but this resulted in slower and less steady
growth (fig. S3B). Barring the above excep-
tions, the strong agreement between these
two sets of flux values indicates a high level of
cross-consistency between the kinetic param-
eter values themselves.
Our third findingwas that the production of

cellular protein can only be met by the overall
capacities of the cell (in terms of building
block resources as well as cell size and mass)
if most of the genes are transcribed less than
once per cell cycle, including a number of es-
sential genes. This observation was preceded
by a comparison between our model simula-
tions of protein expression with a validation
dataset (>2000 points) that was also withheld
from the creation and parameterization of the
model (32). We found a strong correlation be-
tween the predicted and observed protein abun-
dances at higher expression levels; at lower
levels, we did not see a correlation, which can
be explained by the detection limits of high-
throughputmRNA and proteinmeasurement
technologies (Fig. 4A) (38). The overall cor-
relation for protein abundances ≥30, although
significant, has an interesting consequence at
the level of individual genes: We found that
although many genes are transcribed multiple
times as a typical cell grows and divides un-
der these conditions (aerobic glucose mini-
mal medium), a clear majority of the genes in
E. coli are transcribed at a rate of less than
once per cell cycle (Fig. 4, B and C). Such sub-
generational gene expression has been observed
both theoretically (39, 40) and experimentally
(41–43), but our model led us to two insights:
(i) subgenerational transcription affects >50%
of the genes in E. coli and (ii) 72 essential genes
are among those that are subgenerationally
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Fig. 3. Evaluating metabolic parameter values against each other and in the
context of cellular growth. (A) Violin plot of concentrations at each simulation
time point for downstream metabolites of the reaction catalyzed by CdsA,
phosphatidylethanolamine (PE), and phosphatidylglycerol (PG), when the concen-
tration of CdsA is low (orange, indicating the original, short protein half-life) or high
(blue, indicating the new, longer protein half-life) (see the main text). (B) Violin
plot for glucose yield at each simulation time point for simulations with succinate
dehydrogenase and fumarate reductase kinetics constraints disabled or enabled.
Experimental value is 0.46 g cell/g glucose at m = 0.900 hour–1 (52). (C) Comparison
of the average fluxes from simulations with succinate dehydrogenase and fumarate
reductase constraints disabled for a set of reactions in central carbon metabolism
with experimental measurements (34). Orange points indicate outlier fluxes,
which are discussed in more detail in the text. Correlation is shown for all data points
(blue and orange) and when excluding outliers (blue). (D) Impact of individually
disabling each kinetic reaction constraint on the succinate dehydrogenase flux in
simulations, shown as a z-score representing the average change in flux for removing
one constraint compared with the distribution of the average change in flux for
removing each constraint. Constraints that have a z-score of < –0.1 are highlighted
in orange and shown in more detail. Highlighted reaction constraints are part
of the reactions that are further explored in (E). (E) Comparison of the average
metrics for simulations from a two-level full factorial design to test the effects
of removing up to eight kinetic constraints of interest. Inset shows the target region
where the simulated glucose uptake rate is close to the expected glucose uptake
rate and simulation succinate dehydrogenase flux is within a factor of 2 of the

experimental flux (green region). Disabled constraint combinations are enumerated
for each point in the target region. Orange points indicate simulations run with
combinations of disabled constraints that included G, I, N, and S; blue points
indicate simulations run with at least one of these constraints enabled. Abbreviations
are listed below in (F). (F) Distributions of predicted kcat value at each simulation
time step (blue) and curated kinetic parameters (orange) for each reaction
identified: citrate synthase (Ci), cytosine deaminase (Cy), phosphoserine amino-
transaminase (P), glyoxylate reductase (Gx), isocitrate dehydrogenase (Ic), fumarate
reductase (F), glutathione reductase (G), inorganic pyrophosphatase (I), NADH
dehydrogenase (N), and succinate dehydrogenase (S). Original is from simulations
without constraints for S and F; final is from simulations without constraints
for Gx, Ic, G, I, N, and S. The black arrow for N indicates a newly curated kcat
parameter that was not used in the model. (G and H) Similar to (B) and (C) but
based on data from simulations with the new set of disabled constraints.
(I) Representative output from simulations with the new set of disabled constraints,
showing the increase in mass (normalized to initial mass and over a single life cycle)
of six key cellular mass fractions. (J) Comparison between the metabolic fluxes
calculated directly from the kinetic parameters (target) and the fluxes computed
by simulations with the new set of disabled constraints, as summarized by the
R2 value. Gray points correspond to reactions with no simulated flux despite
having a target flux. Correlations are shown for all data points (blue and gray) and
with gray points excluded (blue only). Full details of the analysis required to generate
this figure, as well as a pointer to the generating code, can be found in the
supplementary materials, section 1.2.
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transcribed (Fig. 4D) (see the supplementary
materials for essentiality criteria).
How might cells survive and grow when

some of their essential genetic content is not
transcribed at all during a typical division
cycle? One possibility is that although the
mRNAs may be rarely present in the cell, the
corresponding proteins and protein complexes
produced are numerous and stable enough
that the cell never experiences their functional
absence (i.e., a period of time in which the
protein is completely absent from the cell).
In fact, this accounted for ~1000 of the func-
tional protein units (including complexes and
functional monomers) of subgenerationally
transcribed genes in our simulations, leaving
just over 1400 protein products that are com-
pletely absent from the cell at least part of the
time, including 23 proteins that are considered
products of essential genes (Fig. 4E) (table S4).
This result suggests that certain proteins

believed to be required for cell viability are
likely to be absent from single cells for at least
short periods of time. In the case of an essential
protein, how does the cell compensate for its
temporary loss caused by very low expression
rates? To answer this question, we turned to
our integrative modeling framework, which
enables us to investigate the loss of these pro-
teins as part as a unified system. A representa-
tive example is 4-amino-4-deoxychorismate
synthase, a heterodimeric enzyme involved
in folate biosynthesis. The genes encoding
this enzyme, pabA and pabB, are each tran-
scribed with a frequency of 0.94 and 0.66 times
per cell cycle, respectively (Fig. 4F), producing
an average of 34 PabA proteins and 101 PabB
proteins per generation. The enzyme is only
active as a heterodimer (PabAB) in our model,
for which the average count of active complex
in our simulations is 43.8, with an SD of 35.3,
and we readily observed periods of time in
which no heterodimer existed (Fig. 4F, gray
region). During the periods inwhich the PabAB
dimer was completely absent, the internal pool
of 5,10-dimethylene tetrahydrofolate (methylene-
THF) was reduced over time; however, after
a new round of pabA or pabB expression,
methylene-THF was rapidly resynthesized.
We further confirmed that the parameter
value for the synthesis probability of pabB
mRNA is causal for PabAB and methylene-
THF depletion, because lowering the value
exacerbated it (fig. S4). Supporting this pro-
posed mechanism, others have shown that
bacterial metabolite pools display a much
wider dynamic range than protein concen-
trations and can change by 50- to 170-fold
over time, including by almost complete de-
pletion of certainmetabolites (44).We conclude
that internalmetabolite pools, replenished by
rapid enzyme kinetics, can provide a literal
buffer to make cell growth robust to inter-
mittent loss of key enzymes.

The fourth finding of this study was that
the data we compiled, when considered as a
unified whole, can lead to successful predic-
tions in vitro, in this case protein half-lives.
As shown in Fig. 1, the equations that govern
mRNA and protein expression incorporate
many types of available data and, once pop-
ulated in our model, were able to successfully
predict protein abundance measurements that
were previously withheld from the model (Fig.
4A). Not all proteins display such consistency,
however, so we performed a further analysis in
which the previously withheld proteomics data
(32) were also taken into account to identify
and understand the causes of discrepancy for
these proteins. We first noted that cells for
which the entire division cycle occurs in the
log or exponential phase of growth may be
considered to be operating at a steady state in
terms of maintaining mRNA and protein con-
centrations. This can be represented mathe-
matically by setting the derivative terms in
Fig. 1 to zero and substituting the solution for
the mRNA concentration into the equation
governing protein concentration. If the exper-
imental data that populate these equations are
consistent, then the average rate of protein
production should equal the average rate of
protein loss (where the loss rate includes loss
by dilution as well as by degradation). This
proved to largely be the case, with 85% of the
production rates within an order of magni-
tude of the corresponding loss rate (Fig. 5A).
However, the flip side of this result is that

~15% of the protein production rates differed
from the loss rates by more than an order of
magnitude. In considering the cases where the
production and loss rates were discrepant, we
considered that one likely source of discrep-
ancy is due to the “N-end” rule, which uses the
amino acid sequence of a protein to predict its
half-life (16). The N-end rule is usually accu-
rate, but in the discrepant cases we noted, we
wondered whether the rest of the data pop-
ulating the model could provide a better esti-
mate of proteinhalf-lives. To test this hypothesis,
we identified six outlier proteins from this
analysis, three of whichwere predicted by our
analysis to have longer half-lives and three
that were predicted to have shorter half-lives.
Measurement of the actual half-lives of these
proteins experimentally confirmed that our
predictions were correct (Fig. 5B). We then
replaced the N-end rule–based parameter
values with these new measurements (which
also preserved the proteomics data as a vali-
dation dataset). This result caused us to revisit
our analysis of cdsA expression (Figs. 2B and
3A), because the N-end rule assigns the CdsA
protein a short half-life, which if incorrect
could cause the simulation to have an erro-
neously low CdsA concentration. Our steady-
state analysis supported the idea that the CdsA
protein may have a longer half-life (Fig. 5A).

CdsA is a membrane protein, which makes
protein extraction and traditional Western
blotting difficult (45). As a result, we used
immunofluorescence of overexpressed CdsA
to measure the presence of protein over time,
and found abundant expression of CdsA, but
not RpoH (which has a short half-life; see fig.
S5A), after 24 hours (Fig. 5C and fig. S5, C and
D). This is consistent with a half-life on the
order of 10 hours for CdsA (Fig. 5B), which
was included in the finalized model. The re-
sulting simulations (i.e., the simulations shown
in Figs. 1 to 4) had a higher protein count and
predicted normal growth, resolving our ques-
tions regarding cdsA. Our steady-state analysis
thus confirmed that the N-end rule holds in
most cases, but also identified the points that
were most likely to be discrepant and even
calculated estimates of protein decay rates
that were predictive of new experimental data.
In sum, construction of a highly integrative

andmechanisticmathematicalmodel provided
us with an opportunity to integrate and cross-
validate a vast and heterogeneous set of data
inE. coli, a processwe now call “deep curation”
to reflect the multiple layers of curation that
we perform (analogous to “deep learning”
and “deep sequencing”) (Fig. 1). These layers
include: (i) a data layer, (ii) a layer of param-
eters derived from the data, (iii) a layer of
equations that encapsulate the parameters
and also describe the underlying biological
mechanisms (which notably must also be
curated from the literature), (iv) a layer that
contains the unified model, and (v) a layer of
the simulation output, which is executable and
can be used for automated comparison with
any future data that are generated. By high-
lighting those areas in which studies in E. coli
contradict each other, our work suggests lines
of fruitful experimental inquiry for the future
that may help to resolve discrepancies, lead-
ing to both new biological insights and amore
coherent understanding of this critical model
organism.
We found that most of the data are in fact

cross-consistent with themselves. This means
that the data generated by this scientific com-
munity are reliable on the whole and may be
particularly interesting given how many of
these measurements were performed in vitro
rather than in vivo.Moreover, themodel shows
that these data are capable of validatable pre-
dictions, not only on previously withheld data
(fig. S2E and Figs. 3G and 4A), but also on
experimental results obtained later (Fig. 5B).
This strongly suggests that the model is a
good representation of the overall dataset and
is a starting point from which we can build
toward a whole-cell model that includes many
more functionalities, such as mechanisms of
DNA replication initiation (46), response to
nitric oxide stress (47), the formation of colonies
(48), the dynamics of division site selection (49),
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Fig. 4. A large fraction of
E. coli genes are tran-
scribed less than once
per cell cycle. (A) A com-
parison of simulation and
experimental results (32)
with regard to the number
of proteins expressed per
cell for each gene. The
proteins are grouped as
being highly abundant if the
measured count per cell is
≥30 and otherwise lowly
abundant. The R2 statistic is
computed separately for
each group on the log-
transformed data.
(B) Simulations of mRNA
and protein expression over
multiple generations for
genes that are expressed at
high (left, in red) and low
(right, in blue) levels of
transcriptional frequencies
(note that colors are con-
served to preserve meaning
throughout the figure).
Counts are shown for a
representative six-
generation long window,
with an arbitrarily chosen
zeroth starting generation.
(C) Frequency of observing
at least one gene
transcript per generation
over a 32-generation
simulation. Histograms
show that 1547 genes are
transcribed at least once
per cell cycle (red),
203 genes are essentially
never expressed in this
environment (yellow), and
the remaining 2603 genes
are transcribed with a
frequency between 0 and 1
(blue). (D) Expression
frequency analysis of
known essential genes.
(E) Division of the subge-
nerationally transcribed
genes into those for which
at least one protein is
present at all times during
the simulations and those
for which the protein is absent for at least one time step (gray bars). Protein
products of essential genes are indicated by the blue bars. Distinct protein units
represent subgenerationally expressed monomers and protein complexes
composed of subgenerationally expressed monomers. (F) Transcription,
translation, complexation, and metabolic activity of the PabAB heterodimer,
which catalyzes a reaction responsible for producing folates. Each new

generation is indicated with a tick mark along the x-axis; the gray area highlights
a period of time in which the heterodimer is not present in the cell. All y-axes are
linearly scaled except the [10–3, 0.44] region of the reaction flux plot, which is
log-scaled for better readability. Full details of the analysis required to generate
this figure, as well as a pointer to the generating code, can be found in the
supplementary materials, section 1.2.
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andmanymore, all of which will in turn enable
us to encapsulate many more environments
and data types.
Our synthesis of heterogeneous data, along

with the deep curation approach that we
have described, provide a way of encapsulat-
ing and interpreting such a synthesis as a
unified whole. We hope that this work, by
demonstrating the value of a large-scale in-
tegrative approach with regard to understand-
ing, interpreting, and cross-validating large
datasets, will inspire further efforts to com-
prehensively characterize not only E. coli
[as originally suggested by Francis Crick and
Sydney Brenner (50)], but also other orga-
nisms of interest.
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Fig. 5. Integrated model–
data comparison leads to
improved prediction of
protein half-lives. (A) Com-
parison of calculated protein
production rates against
protein loss rates for each
gene. Bold lines indicate
areas where the production
rate and loss rate differ by
more than one order of
magnitude. (B) Comparison
of the N-end rule with new
measurements of protein
half-lives for the genes high-
lighted in (A). The three
points highlighted in red
were predicted to be outliers
in the steady-state analysis
because their corresponding
protein half-lives were much
shorter than the N-end rule’s
prediction of 10 hours. Sim-
ilarly, the proteins high-
lighted in blue were
predicted to have much lon-
ger half-lives than the N-end
rule’s prediction of 2 min.
Solid bars indicate half-lives
that were determined by
intensities on a Western blot,
and the striped bar indicates
an estimate (assumed from
higher N-end rule value)
from intensity measure-
ments using immunofluorescence. In all seven cases, these predictions were
correct. The results of control experiments (testing our protein half-life
measurements against previous reports) can be found in fig. S5. (C) Images of
E. coli MG1655 cells with either a His-tagged RpoH or CdsA plasmid that were
induced for 1 hour using isopropyl-b-D-thiogalactopyranoside followed by the
addition of tetracycline to inhibit translation. At the indicated time points,
aliquots of the culture were harvested and immunofluorescence was performed

using an anti-His antibody. The His-RpoH protein signal decreased within
minutes, whereas the His-CdsA protein signal was maintained or increased over
the time course. All images shown are scaled between 50 and 1000 arbitrary
units. Scale bar (yellow), 10 mm. A detailed look at the localization of RpoH and
CdsA is shown in fig. S5B. Replicates are shown in fig. S5, C and D. Full details of
the analysis required to generate this figure, as well as a pointer to the
generating code, can be found in the supplementary materials, section 1.2.
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Testing biochemical data by simulation
Can a bacterial cell model vet large datasets from disparate sources? Macklin et al. explored whether a comprehensive
mathematical model can be used to verify or find conflicts in massive amounts of data that have been reported for
the bacterium Escherichia coli, produced in thousands of papers from hundreds of labs. Although most data were
consistent, there were data that could not accommodate known biological results, such as insufficient output of RNA
polymerases and ribosomes to produce measured cell-doubling times. Other analyses showed that for some essential
proteins, no RNA may be transcribed or translated in a cell's lifetime, but viability can be maintained without certain
enzymes through a pool of stable metabolites produced earlier.
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