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Immune cells adopt a variety of metabolic states to support
their many biological functions, which include fighting path-
ogens, removing tissue debris, and tissue remodeling. One of
the key mediators of these metabolic changes is the tran-
scription factor hypoxia-inducible factor 1α (HIF-1α). Single-
cell dynamics have been shown to be an important determi-
nant of cell behavior; however, despite the importance of HIF-
1α, little is known about its single-cell dynamics or their effect
on metabolism. To address this knowledge gap, here we opti-
mized a HIF-1α fluorescent reporter and applied it to study
single-cell dynamics. First, we showed that single cells are likely
able to differentiate multiple levels of prolyl hydroxylase inhi-
bition, a marker of metabolic change, via HIF-1α activity. We
then applied a physiological stimulus known to trigger meta-
bolic change, interferon-γ, and observed heterogeneous, oscil-
latory HIF-1α responses in single cells. Finally, we input these
dynamics into a mathematical model of HIF-1α-regulated
metabolism and discovered a profound difference between cells
exhibiting high versus low HIF-1α activation. Specifically, we
found cells with high HIF-1α activation are able to meaning-
fully reduce flux through the tricarboxylic acid cycle and show
a notable increase in the NAD+/NADH ratio compared with
cells displaying low HIF-1α activation. Altogether, this work
demonstrates an optimized reporter for studying HIF-1α in
single cells and reveals previously unknown principles of HIF-
1α activation.

Many immune cells, and in particular T cells and macro-
phages, need to adopt a variety of metabolic states to perform
the diverse functions that are required of them (1–3). For
example, macrophage activation can range from proin-
flammatory in M1 cells to anti-inflammatory in M2 cells (4–7).
These two activation states have different responsibilities
within the body and also exhibit different metabolic signatures
(8–10). For example, M1 macrophages utilize aerobic glycol-
ysis, increase flux through the pentose phosphate pathway, and
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attenuate oxidative phosphorylation. Moreover, they accu-
mulate the tricarboxylic acid (TCA) cycle intermediates suc-
cinate, citrate, and itaconate, which have important metabolic
and signaling roles within the cell (9, 11). M2 macrophages, on
the other hand, have an increased reliance on oxidative
phosphorylation and fatty acid oxidation (9, 12, 13).

One of the key transcription factors involved in mediating
these large metabolic changes in immune cells is the tran-
scription factor hypoxia-inducible factor 1α (HIF-1α). HIF-1α
has been shown to be required for immune responses in
several contexts (14). For example, HIF-1α is known to be
essential for bactericidal activity in myeloid cells (15, 16). HIF-
1α activity is also required for trained immunity, as mice with a
myeloid-specific HIF-1α knockout, unlike wildtype mice, were
not protected against infection by Staphylococcus aureus by an
initial stimulus of β-glucan (17). In some cases, inhibition of
HIF-1α can also lead to a stronger immune response in innate
immune cells (18). Beyond an immune context, HIF-1α also
has important regulatory roles and is frequently found to be
differentially regulated, in cancerous cells and in the context of
metabolic or cardiovascular diseases (19–22).

Single-cell analysis via live-cell imaging has been a powerful
tool to elucidate cell behavior in many systems but has only
been applied in a limited capacity to HIF-1α signaling (23–25).
Nonetheless, the few studies of single-cell HIF-1α dynamics
have already revealed important characteristics of single-cell
HIF-1α responses. For example, Bagnall et al. (26) used live-
cell microscopy to show that HIF-1α responses are “pulsa-
tile” or transient in response to sustained hypoxic conditions.
Their work suggests that the transient responses are likely
necessary to avoid induction of proapoptotic genes that would
occur with more sustained HIF-1α activation. In a separate
example, Moroz et al. (27) observed differences of HIF-1α
localization and activation patterns in different cell lines using
a luciferase-based reporter. Yet, despite these examples, still
relatively little is known about HIF-1α dynamics in single cells,
especially in normoxia and in response to nonhypoxia mimetic
stimuli. In addition, whether the dynamics of HIF-1α activa-
tion can be used to encode information at a single-cell level,
and how that information is decoded into a phenotypic
response, is still unknown.
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Optimized single-cell HIF-1α reporter
Live, single-cell imaging of signaling pathway or transcrip-
tion factor activity over time has often been paired with sys-
tems analysis and mathematical modeling (23). Existing
mathematical models of HIF-1α activation have yielded valu-
able insights (28). For instance, in the example mentioned
above, Bagnall et al. (26) combined models of HIF-1α activa-
tion and the p53-Mdm2 feedback loop to interrogate how
different HIF-1α activation profiles affect the dynamics of p53.
In another example, a detailed model of HIF-1α activation was
used to suggest that hydroxylation by factor inhibiting HIF can
actually confer some protection from proteasomal degradation
(29). Finally, in a more recent example, a systems analysis
approach was used to explain seemingly paradoxical results
regarding HIF-1α activation and adipogenesis (30). Literature
results have shown roles for HIF-1α in both promoting and
preventing adipogenesis. The authors used experiments and
modeling to show that, depending on the strength and timing
of the adipogenic differentiation cue and HIF-1α activation,
HIF-1α can both increase and decrease the accumulation of
lipids in OP9 cells (30).

Nonetheless, measuring single-cell dynamics can be
technically challenging and requires making measurements
with high spatial and temporal resolution. Live-cell mi-
croscopy is a widely used method for studying single-cell
signaling but requires a way to connect activity of the
protein of interest into a change in fluorescence intensity,
wavelength, or localization. Although HIF-1α, like most
proteins, can be regulated in many ways, the primary mode
of regulation is via posttranslational modifications (31).
Specifically, HIF-1α is hydroxylated on two conserved
proline residues by a family of O2-dependent prolyl-4-
hydroxylases (PHDs) (32, 33). The hydroxylation of HIF-
1α is recognized by the von Hippel-Lindau E3 ubiquitin
ligase complex, leading to polyubiquitination and subse-
quent proteasomal degradation of HIF-1α (32, 34). In the
absence of oxygen or other required cofactors, however,
the PHDs are inactive and HIF-1α accumulates in the cell.

Here, we describe a novel HIF-1α fluorescent reporter,
which builds on the work of Bagnall and colleagues by adding a
number of improvements, including the addition of the
endogenous 50 UTR, as well as mutations to prevent down-
stream effects of overexpression of the reporter. We show that
this reporter allows accurate quantification of HIF-1α dy-
namics in single cells. We then use the reporter to characterize
single-cell responses to PHD inhibition and show that single
cells can theoretically resolve differences in PHD activity levels
via HIF-1α accumulation. We then examine single-cell re-
sponses to the physiological stimulus interferon gamma (IFN-
γ) and observe the presence of previously undescribed HIF-1α
oscillations. Finally, we use a mathematical model to examine
the potential downstream metabolic consequences in each
individual cell and observe that only cells with high HIF-1α
activation are able to downregulate mitochondrial metabolism.
In all, this work provides a new reporter for use by the broader
scientific community and meaningful insights about the acti-
vation of HIF-1α in single cells.
2 J. Biol. Chem. (2023) 299(4) 104599
Results

A novel fluorescent HIF-1α reporter allows accurate
quantification of heterogeneous single-cell HIF-1α activation
dynamics

Our decision to construct a novel reporter was based on a
preliminary investigation of single-cell HIF-1α activation using
immunofluorescence. We stimulated RAW 264.7 cells (a
mouse monocyte cell line) with dimethyloxallyl glycine
(DMOG), an inhibitor of PHDs, and IFN-γ, a cytokine known
to activate HIF-1α, for 10 h, taking samples every hour for
immunostaining. As expected, we observed rapid, strong, and
nearly ubiquitous HIF-1α activation in cells stimulated with
DMOG (Fig. 1, A and B). On the other hand, cells stimulated
with IFN-γ exhibited a delayed HIF-1α response, with signif-
icant variability within the population (Fig. 1, A and B). In
particular, the overall response appeared to be driven by a
small portion of the population with very high HIF-1α accu-
mulation (Fig. 1C). The coefficient of variation was also higher
for the IFN-γ response than for the DMOG response (Fig. 1D).

To explore this heterogeneity further, and to quantify it in
more detail, we turned to live-cell microscopy, which offers
both a higher temporal resolution and the ability to track in-
dividual cells over time (23, 35). We designed and built a novel
fluorescent reporter for HIF-1α activity (Fig. 1E). We aimed to
build a reporter that would report on the posttranslational
regulation of HIF-1α, as this is the primary method of regu-
lation (31). The initial design was based on previously pub-
lished reporters, which comprised a fluorescent protein linked
to the C terminus of the full-length HIF-1α protein (26, 36).
Unfortunately, we were unable to measure reporter activity in
RAW 264.7 cells using this initial design; thus, we first made a
number of changes aimed at increasing expression and
brightness (Table S1). In particular, we replaced the original
promoter with the murine cytolomegavirus promoter, which
has previously been demonstrated to be a strong promoter in
RAW 264.7 cells (37, 38). We also changed the primary fluo-
rescent protein to mNeonGreen, which is brighter and ma-
tures faster (39).

Several other changes were also made to improve the re-
porter. We added an H2B nuclear marker, separated by a P2A
sequence, to allow for normalization of disparate protein levels
and quantification of relative HIF-1α activity (40, 41). Inter-
estingly, the fluorescent protein attached to the nuclear marker
had a significant impact on the intensity of the reporter signal:
reporters with an H2B-mCerulean nuclear marker were much
brighter than reporters with an H2B-mRuby2 or H2B-
mCerulean3 nuclear marker, possibly due to the reduced
propensity of mCerulean to form aggregates (Fig. S1) (42). We
also introduced a number of point mutations (Q320E, V336E,
Y340T, L805A) into the HIF-1α protein intended to prevent
binding with HIF-1β and p300, thus reducing the chance of
effects associated with overexpression of an exogenous protein
(43–45). We also found that moving the fluorescent protein
from the C terminus to a disordered loop in the middle of the
protein resulted in more consistent localization and a brighter
reporter (46).
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Figure 1. An optimized HIF-1α reporter allows accurate quantification of HIF-1α activity in single cells. A, representative immunofluorescence images
showing maximum activation of RAW 264.7 cells stimulated with PBS, 500 μM dimethyloxallyl glycine (DMOG), or 10 ng/ml interferon gamma (IFN-γ). The
scale bar represents 50 μm. B, accumulation of HIF-1α normalized to maximum HIF-1α accumulation observed for each stimulus. Error bars are standard
deviation from three biological replicates. C, distributions of HIF-1α accumulation in single RAW 264.7 cells 10 h after stimulation with 10 ng/ml IFN-γ. D,
coefficient of variation of HIF-1α accumulation in single RAW 264.7 cells stimulated with 500 μM DMOG or 10 ng/ml IFN-γ, as measured at maximum
activation using immunofluorescence. Error bars are standard deviation from three biological replicates. E, graphical representation of the HIF-1α reporter
construct. Red x’s represent point mutations designed to block HIF-1α binding to binding partners. F, distribution of mean single-cell HIF-1α accumulation
for reporters with and without the endogenous HIF-1α 50 UTR region. G, comparison of HIF-1α activation dynamics as measured using the reporter (lines)
and immunofluorescence (markers). Normalized by maximum activation observed. Shaded region and error bars represent standard deviation of three
biological replicates.

Optimized single-cell HIF-1α reporter
Together, these changes produced a reporter with measur-
able expression and predictable localization in the nucleus.
However, expression levels were still low for much of the
population. Indeed, this reporter did not respond to DMOG
stimulation in most cells, in contrast to our immunofluores-
cence results. We hypothesized that this was in part due to the
global decrease in translation that occurs in hypoxic and
hypoxia-mimetic conditions (47–49). To mitigate this, we
included the 50 UTR from the endogenous HIF-1α gene, which
contains an efficient ribosome entry site and is required for
adequate HIF-1α expression in hypoxic conditions (50). The
resulting reporter exhibited a much stronger response to
DMOG stimulation (Fig. 1F). In all, our novel reporter pro-
duced a strong fluorescent signal in RAW 264.7 in response to
known HIF-1α activators. We also examined the reporter in a
human cell line (HeLa cells) and found that it was responsive
to DMOG stimulation (Fig. S2).

To validate that the reporter was accurately recapitulating
HIF-1α activation dynamics, we returned to our earlier time-
course immunofluorescence measurements. Measurements
in the same single cell are challenging because the reporter is
also recognized by HIF-1α antibodies. We found that HIF-1α
measurements obtained using our reporter closely matched
the immunofluorescence-measured HIF-1α dynamics over
J. Biol. Chem. (2023) 299(4) 104599 3
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several hours (Figs. 1G, S3, and S4). These results confirm that
the reporter can be used to accurately determine the dynamics
of HIF-1α activation in single cells over time; we note, how-
ever, that the reporter only provides information about post-
translational regulation of HIF-1α.
RAW 264.7 cells respond to PHD inhibition primarily in a
digital manner, but individual cells still exhibit some analog
properties

In the previous literature, single-cell responses have been
characterized as either digital, where differing fractions of cells
respond with the same intensity, or analog, where cells
respond with differing intensities (Fig. 2A). We wondered
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Figure 2. RAW 264.7 cells respond to prolyl hydroxylase inhibition in a
responses are defined by an increase in the fraction of cells responding, while
responding cells. B, representative images of reporter activation over time in R
scale bar represents 25 μm. C, single-cell traces of responding (blue) and no
Distributions represent probability density of mean activation levels in single ce
Shaded regions represent 95% confidence intervals estimated from 1000 boo
Error bars represent 95% confidence intervals estimated from 1000 bootstrap r
to stimulation with indicated concentrations of DMOG. G, distributions of mean
DMOG.
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whether HIF-1α activation exhibited more digital or analog
qualities. We therefore ran live-cell imaging experiments to
quantify the response characteristics of HIF-1α activation in
hundreds of individual RAW 264.7 cells (Fig. 2B). We used
DMOG to directly manipulate PHD activity, thus avoiding
noise in HIF-1α activation that could be generated by up-
stream signaling pathways. Even at high DMOG concentra-
tions, a substantial portion of the population did not produce
measurable HIF-1α activation (Fig. 2C). We also observed a
range of response intensities and speeds in the responding cell
population.

Next, we examined the dependence of HIF-1α activation on
concentration of DMOG. We stimulated cells with a log-
distributed range of DMOG concentrations from 0 μM to
G

primarily digital manner. A, as stimulus concentration increases, digital
analog responses are defined by an increase in the mean response of the

AW 264.7 cells stimulated with 500 μM dimethyloxallyl glycine (DMOG). The
nresponding (black) cells in response to stimulation with 500 μM DMOG.
lls. D, mean population responses of RAW 264.7 cells stimulated with DMOG.
tstrap replicates. E, fractions of cells responding to stimulation with DMOG.
eplicates. F, distributions of mean activation in responding cells in response
derivative during first 2 h after stimulation with indicated concentrations of
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500 μM. Each concentration produced a distinct HIF-1α
activation response at the population level (Fig. 2D). Further
analysis showed that higher concentrations of DMOG corre-
sponded to larger fractions of the population responding, a
3.6-fold increase from the smallest nonzero DMOG concen-
tration to the largest (Fig. 2E). This suggests that the single-cell
HIF-1α activation response includes a strong digital compo-
nent. However, responding cells appeared to exhibit some
analog capacity as well, as we observed that higher DMOG
concentrations produced greater mean activation (1.3× in-
crease), faster responses (2.4× increase), and more sustained
responses (2.9× increase) in active cells (Figs. 2, F and G, S5,
and S6). Together, these results suggest that activation of HIF-
1α in single cells also has analog properties.
A minimal model of HIF-1α activation predicts that analog
properties of HIF-1α activation can theoretically encode
information in single cells

We next sought to quantify the ability of single cells to
encode information about varying amounts of PHD inhibi-
tion. We applied the mathematical framework of informa-
tion theory, which has been used extensively in other cellular
systems (51–67). In short, each individual cell may be
considered as an information channel that can encode in-
formation about an external signal as a response in the in-
ternal state of the cell. High levels of noise can preclude the
cell from accurately discriminating the signal it receives. In
such cases, the distribution of responses to one stimulus
exhibits significant overlap with the distribution of responses
to a second stimulus, such that the nature of the stimulus
cannot be reliably determined from the response (Fig. 3A,
top panel). These cells may be thought of as channels with a
low capacity for information transfer. Alternatively, cells
experiencing lower levels of noise can precisely discriminate
the stimuli from experimental outputs and thus may be
called channels with a high capacity for information transfer
(bottom panel).

A quantity that can be used to describe this effect is the
channel capacity (C), which is the maximum achievable
mutual information. This value can be conceptualized as the
amount of information that can be gained about a set of inputs
by measuring the output responses. Equation 1 shows a basic
formula for calculating mutual information in a discrete sys-
tem, where S = {s1, s2, s3, . . ., sN } represents the possible
stimuli and R = {r1, r2, r3, . . ., rM } represents the possible
responses. Applying this framework to our experimental re-
sults, we take S to be the DMOG concentrations used in the
experiment and R to be properties of the measured single-cell
HIF-1α responses, such as mean activation, area under the
curve, or derivative of the initial response. We refer the reader
to the Supporting information for a more complete discussion
of applying information theory to study cellular systems.

C¼ sup
pðsÞ

IðS;RÞ¼ sup
pðsÞ

X

s2S

X

r2R
pðs; rÞlog2

pðs; rÞ
pðsÞpðrÞ (1)
We observed that the distributions of the area under the
curve of single-cell HIF-1α responses exhibit substantial
overlap for different concentrations of DMOG, with an esti-
mated single-cell channel capacity below 1 bit, suggesting that
single cells have a highly limited ability to encode information
through HIF-1α (Fig. 3B). We found a similarly low channel
capacity using the initial speed of the HIF-1α response
(Fig. 3C). Surprisingly, such a low channel capacity suggests
that cells cannot even reliably discriminate the presence or
absence of PHD inhibition.

Given this counterintuitive result, we sought to understand
the source of the noise that confounded the HIF-1α channel
capacity of our cells. Noise can be broadly categorized as
intrinsic, referring to the stochastic fluctuations associated
with low discrete molecule counts inside of individual cells, or
extrinsic, referring to intercell variability in the concentrations
of important molecules (68, 69). Recent results have suggested
that much of the variance observed in cellular populations is
due to extrinsic effects and may be better conceptualized as
phenotypic variability rather than noise (55, 70–73). To
investigate this possibility in the context of PHD inhibition, we
first estimated the contribution of intrinsic and extrinsic noise
to the variance, as previously described (52). Briefly, a short
time period is defined in which HIF-1α levels may reasonably
be expected to be nearly constant. This period is then used to
calculate the intracellular variance, which is compared with the
total variance in the population (Fig. S7). The intracellular
variance is the intrinsic noise combined with experimental
error, while the extrinsic noise can be derived by subtracting
the intracellular variance from the total variance. Similar to
other systems, we observed that the variance in the activation
of HIF-1α is dominated by extrinsic noise (Fig. 3D). This
suggests that individual cells experience lower noise and may
be able to resolve varying amounts of PHD inhibition with
higher fidelity than our previous estimates.

To correct for the impact of extrinsic effects on our channel
capacity calculations, we would normally need to stimulate the
same cell multiple times with different stimulus strengths
(54–56). However, this is generally infeasible, as cells will not
return to the same baseline state after stimulation. We
therefore used mathematical modeling to run a theoretical
experiment in which the same cell begins in the same baseline
state and is stimulated with many different stimulus concen-
trations. For this purpose we built a minimal ordinary differ-
ential equation model based on a HIF-1α network shown
schematically in Figure 3E and described by Equations 2–5.

d½HIF �
dt

¼ kprod − kdeg ½HIF �−kdeg;act ½HIF �½PHDA� (2)

d½PHDA�
dt

¼ koff ½PHDI �−kon½PHDA�½DMOG� (3)

d½PHDI �
dt

¼ kon½PHDA�½DMOG�−koff ½PHDI � (4)
J. Biol. Chem. (2023) 299(4) 104599 5
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Figure 3. A minimal model predicts that single cells can encode information via HIF-1α activation. A, high amounts of noise can preclude cells for
accurately determining the level of stimulus they received as response distributions largely overlap (top panel), while pathways with little noise allow
accurate stimulus discrimination (bottom panel). B, distributions of area under the curve of cells responding to dimethyloxallyl glycine (DMOG) stimulation.
Darker color indicates higher concentration. Concentrations included are 0, 31.25, 62.5, 125, 250, and 500 μM. C, distributions of mean derivative during the
first 2 h after stimulation with DMOG. Darker color indicates higher concentration. Concentrations included are 0, 31.25, 62.5, 125, 250, and 500 μM. D,
experimentally measured intrinsic and extrinsic variance for cells stimulated with 0, 31.25, 62.5, 125, 250, or 500 μM DMOG. Note that these data also appear
in the left panel of Fig. S10, where they are compared with values derived from simulations. E, schematic of a minimal model of HIF-1α activation and prolyl
hydroxylase–mediated HIF-1α degradation. F, model-simulated median HIF-1α activation (lines) compared with experimentally measured responses
(markers) in DMOG-stimulated cells. Error bars represent 95% confidence intervals estimated from 1000 bootstrap replicates. G, distribution of estimated
single-cell channel capacities for cells stimulated with 500 μM DMOG. Distribution of channel capacities for all concentrations shown in Fig. S11. H, ratio of
estimated prolyl hydroxylase concentration to HIF-1α degradation rate for cells stimulated with 500 μM DMOG. Ratio for all concentrations shown in
Fig. S11.

Optimized single-cell HIF-1α reporter
d½DMOG�
dt

¼ koff ½PHDI �−kon½PHDA�½DMOG� (5)

We fit the kinetic parameters of the model to the response
of the median cell in the population. We tested the model by
running it with the same stimulus concentrations as in our
earlier experiments. Our model was able to accurately reca-
pitulate the dose response of the whole population (Fig. 3F).

We reasoned that the extrinsic noise most likely arose from
intercellular variance in the concentrations of HIF-1α and
6 J. Biol. Chem. (2023) 299(4) 104599
PHD. Therefore, we fit the model to each of the individual
measured traces by adjusting only the initial PHD and HIF-1α
concentration. The HIF-1α concentrations were modified by
adjusting kprod and kdeg, resulting in a new steady-state con-
centration of HIF-1α. The differences in kprod and kdeg can be
attributed to differences in the concentration of cellular
components, such as ribosomes, mRNAs, and protease com-
plexes. The simulated single-cell traces from our model cor-
responded reasonably well to our measured traces (Figs. S8
and S9); differences between the measured and modeled
traces are largely attributable to cells that divide during the
experiment or cells with particularly strong HIF-1α feedback.
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Taken together, this set of models, fit to our full collection
of individual cell traces, is a representation of the extrinsic
noise in the population. To incorporate intrinsic effects, we
simply added a Gaussian noise term, where the distribution
was defined by the mean intracellular variance in our
measured traces. Having incorporated both intrinsic and
extrinsic representations of noise, we were able to recapitulate
the measured intrinsic and extrinsic noise values at each
experimental DMOG concentration (Fig. S10).

We then simulated treating each cell with each DMOG
concentration 100 times (a total of 600 simulations for each
modeled cell) and analyzed the predicted outcomes to calcu-
late a new channel capacity. Interestingly, this analysis sug-
gested that two subpopulations of cells coexist in the
population: one group exhibited a high channel capacity
around 2 bits, and the other exhibited a channel capacity that
is effectively zero (Figs. 3G and S11). The size of this latter
group was likely overestimated, due to the limited dynamic
range of our reporter at low activation levels (Fig. S12). That
said, this group could also not be called universally non-
responding, as we observed that several cells were still
responding to PHD inhibition (Fig. S13). Rather, this group
was simply unable to adequately discriminate between
different DMOG concentrations. This finding led us to ques-
tion why some cells could discriminate between DMOG
concentrations while others could not. Further analysis shows
that the ratio of PHD concentration to the basal HIF-1α
degradation rate was a strong indicator of cellular channel
capacity, with cells having a higher channel capacity typically
also having a higher PHD concentration to HIF-1α degrada-
tion ratio (Figs. 3H and S11). This suggests that the primary
determinant of channel capacity in the cells is the capacity for
active PHD-mediated degradation compared with constitutive
HIF-1α degradation. Taken together, these results suggest that
single cells could theoretically encode a substantive amount of
information about a stimulus that leads to PHD inhibition and
HIF-1α activation.
Stimulation of RAW 264.7 cells with IFN-γ leads to a
heterogeneous, and often oscillatory, HIF-1α response

We next turned our attention to HIF-1α activation in
response to a more physiological stimulus, IFN-γ. We again
used immunofluorescence to confirm that our reporter was
able to accurately recapitulate HIF-1α dynamics in
response to IFN-γ stimulation (Figs. S14 and S15). The
differences between the immunofluorescence and reporter
might be due to transcriptional regulation that the reporter
cannot capture. We then measured the dynamic HIF-1α
response to IFN-γ over 18 h using live-cell microscopy
(Fig. 4A and Supplemental Movie). The single-cell re-
sponses exhibited significant heterogeneity in both timing
and intensity, as we had expected based on our immuno-
fluorescence results. However, we observed many different
dynamic patterns of activation, including up to four
recurrent peaks of activation, over the time course (Fig. 4,
B and C).
These oscillations were highly variable in periodicity,
amplitude, and shape. This variability precluded the use of
most readily available peak finding algorithms, so we used a
convolutional neural net-based approach recently developed in
our laboratory to identify peaks in each individual cell trace
(see Supporting information). Using this algorithm, we found
that approximately half of cells stimulated with IFN-γ
exhibited more than one peak of HIF-1α activity (Fig. 4D).
Interestingly, the number of peaks did not correlate with mean
or total HIF-1α activation, suggesting that the oscillations do
not serve to increase HIF-1α activity (Fig. S16). We also found
that many cells took as long as 6 h after IFN-γ stimulation to
exhibit measurable HIF-1α activation (Fig. 4E). This delay,
combined with our observation of oscillations, again indicates
the presence of complex signaling processes required for HIF-
1α activation following IFN-γ stimulation. Finally, we observed
that approximately 90% of cells exhibit some HIF-1α activation
after IFN-γ stimulation. Yet, due to the oscillatory nature of
the response, at any given time point only about 50% of cells
are active (Fig. 4F). This discrepancy highlights the importance
of making dynamic measurements with high temporal reso-
lution for fully describing HIF-1α activation, as our immuno-
fluorescence results were not able to capture the full scope of
HIF-1α activation.
A minimal model of mitochondrial metabolism suggests that
cells with higher HIF-1α activation inhibit mitochondrial
metabolism and generate a high NAD+/NADH ratio

Finally, we wondered whether the heterogeneous HIF-1α
dynamics we observed under IFN-γ stimulation conditions
would also lead to heterogeneity in the downstream pheno-
types of the cells and, in particular, cellular metabolism. Given
the challenge of combining measurements of metabolism and
signaling in the same single cell we again turned to mathe-
matical modeling for additional insight.

We began by implementing a recently published ordinary
differential equation model of HIF-1α-regulated metabolism
(74, 75). The model comprises a minimal model of glycolysis,
the TCA cycle, and oxidative phosphorylation, with known
HIF-1α regulation incorporated as a positive or negative effect
on specific reaction rates. The model was originally validated
by matching experimentally measured metabolite concentra-
tions in normoxic conditions and expected cell behaviors
under hypoxic conditions. For each individual cell trace, we
scaled our experimentally measured single-cell HIF-1α acti-
vation to the concentrations produced by the model (Fig. 5A
shows roughly how this was performed; see Experimental
procedures for complete details).

Using this approach, we observed that the dynamics of HIF-
1α activation correlated with dynamic changes in the meta-
bolic model on approximately the same time scale (Fig. S18).
The model also recapitulated expected behaviors, such as the
increase in lactate fermentation and ATP derived from
glycolysis that results from an increase in HIF-1α activity
(Fig. 5, B and C). Cells with high HIF-1α activation also
showed a significant increase in their NAD+/NADH ratio
J. Biol. Chem. (2023) 299(4) 104599 7
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Figure 4. Stimulation of RAW 264.7 cells with interferon gamma (IFN-γ) leads to a heterogeneous, and often oscillatory, HIF-1α response. A,
representative images of reporter activation in RAW 264.7 cells stimulated with 10 ng/ml IFN-γ. The scale bar represents 50 μm. B, example single-cell
reporter traces and corresponding images of cells stimulated with 10 ng/ml IFN-γ. Arrows indicate cell of interest in images with more than one cell
visible. Time points shown at bottom. The scale bar represents 10 μm. C, heatmap showing normalized individual cell reporter traces after stimulation with
10 ng/ml IFN-γ. Darker colors indicate greater reporter accumulation. D, distribution of number of peaks found in cells stimulated with 10 ng/ml IFN-γ. E,
distribution of times to first activation in cells stimulated with 10 ng/ml IFN-γ, defined as time to peak activation of first peak in each trace. Does not include
cells with no peaks. F, fraction of cells active at the given time point (solid line) and cumulatively for the whole trace (dashed line).
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(Fig. 5D), consistent with recently published experimental re-
sults that show that demand for NAD+ is a driver of aerobic
glycolysis (76). We also confirmed that saturation of the
glycerol 3-phosphate shuttle in the model led to an increase in
fermentation, which is also consistent with recent experi-
mental results (77). Together, these results gave us confidence
that the downstream model outputs were representative of
HIF-1α-mediated metabolic changes.

We next explored in more detail the impact of HIF-1α dy-
namics on two important metrics describing the state of the
cell, specifically the NAD+/NADH ratio, which reflects the
oxidative state of the cell, and the ATP/ADP ratio, which re-
flects the energy balance in the cell. We observed that
increased mean HIF-1α activation was correlated with a
decrease in the ATP/ADP ratio and an increase in the NAD+/
8 J. Biol. Chem. (2023) 299(4) 104599
NADH ratio (Fig. 5, D and E). We wanted to see whether we
could discriminate the model results further by using the cell
subpopulations based on HIF-1α activation dynamics (see
Fig. 4B). We identified no correlation between the number of
peaks and either ratio or the amount of fermentation and
glycolytically derived ATP (Fig. S19, colored dots). This result
is consistent with our earlier observation that the number of
peaks does not correlate with mean HIF-1α activation.

In contrast, comparing model outcomes for cells based on
their maximum exhibited HIF-1α activation revealed a striking
difference between cells with high HIF-1α activation and cells
with no or low HIF-1α activation. Although both groups of
cells exhibit the same trends we observed in regards to
fermentation and glycolytically derived ATP (Fig. 5, B and C),
we observed a reversal of trends in regards to the NAD+/
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NADH ratio and ATP/ADP ratio (Fig. 5, D and E). Specifically,
cells with lower HIF-1α activation tended to exhibit a modest
decrease in the NAD+/NADH ratio and a modest increase in
the ATP/ADP ratio as HIF-1α activity increased. However,
cells with high HIF-1α activation exhibited a reversed trend,
with a significant increase in the NAD+/NADH ratio and a
concomitant decrease in the ATP/ADP ratio as HIF-1α activity
increased. We confirmed this observation in individual cell
traces where peaks with opposite trends were readily apparent
(Figs. 5F and S20).

We wondered what was causing this difference between
high- and low-activating cells and so compared the NAD+/
NADH ratio and ATP/ADP ratio in the cytoplasmic and
mitochondrial compartments in the model. We found strong
correlation between the ATP/ADP ratio in each compartment,
which is understandable given that ATP and ADP can be
transported between the mitochondria and cytoplasm
(Fig. S21). Stated differently, the ATP/ADP ratio decreased in
both compartments together.

However, there was a substantial difference in the NAD+/
NADH ratio between the two compartments. The distribution
of the cytoplasmic NAD+/NADH ratios remained largely un-
changed by differences in HIF-1α activity (high versus low),
while the distributions of the mitochondrial NAD+/NADH
ratios clearly correlated with the amount of HIF-1α activation
(Fig. 5G, see distributions at top and right). This difference
appeared to be mediated by differences in mitochondrial
membrane polarization. Cells with low HIF-1α activity did not
change the polarization of the mitochondrial membrane and
therefore experienced relatively unchanged mitochondrial
NAD+/NADH ratios. On the other hand, cells with high HIF-
1α activity exhibited a pronounced reduction in the mito-
chondrial membrane potential, resulting in reduced ATP
production and a higher NAD+/NADH ratio (Fig. 5H).

Taken together, these results suggest a dynamic metabolic
phenotype in most cells, with two main subpopulations: all
cells with measurable HIF-1α activation exhibited an increase
in glycolytic flux, but only cells with very high HIF-1α acti-
vation were able to substantively decrease flux through the
TCA cycle and attenuate ATP production (Fig. 5I). Cells with
the highest HIF-1α activation seem to be in a metabolic state
requiring significant support for oxidative reactions, resulting
in a much higher NAD+/NADH ratio at the expense of ATP
production. On the other hand, cells with lower HIF-1α acti-
vation do not substantively change their mitochondrial meta-
bolism and instead have only a modest increase in ATP
production associated with increased flux through glycolysis.
Overall, these results suggest that the heterogeneous HIF-1α
dynamics we measured can translate to heterogeneous meta-
bolic states as well, with two distinct phenotypes.
Discussion

Here we describe a novel fluorescent reporter that can be
used to study single-cell HIF-1α activation and utilize math-
ematical modeling to characterize single-cell HIF-1α responses
measured using live-cell microscopy. We show that individual
cells are able to distinguish multiple degrees of PHD inhibi-
tion, suggesting that the activation of HIF-1α could theoreti-
cally be used to encode information in single cells. In addition,
we made several observations that merit additional
consideration.

For instance, our measurements of single-cell HIF-1α re-
sponses revealed substantial cell-to-cell variability, even when
just using a control stimulus. Mathematical modeling revealed
that this variability was likely due to intercell variability in the
amount of PHDs. This result may have been expected based on
some previous results showing the dominance of extrinsic
noise (52, 55, 70–72) and because our measurements were
focused on the last step of the pathway. It is likely true that, if a
larger or more complex pathway was considered, such as with
IFN-γ activation, that the amount of intrinsic noise would be
higher. Nonetheless, it is interesting to note the amount of
extrinsic noise at the last step of the pathway. This variability
may serve to allow the population to respond robustly to a
range of inputs (78). In certain systems, such as adipogenesis,
the variability might also engender a mix of phenotypes within
a population (30).

As in other systems, the application of an information
theoretic framework greatly contributed to our ability to form
new insights regarding single-cell HIF-1α activation (51, 53,
54, 67). Although we describe cells distinguishing different
amounts of HIF-1α activity, it remains unclear whether these
differences are decoded into differences in gene expression.
However, the presence of the more complicated HIF-1α dy-
namics we observed in response to IFN-γ stimulation does
suggest that cells have also evolved mechanisms to utilize
those dynamics. Indeed, it was recently demonstrated that
activation of HIF-1α by an oscillatory stimulus led to differ-
ential regulation of specific genes compared with sustained
HIF-1α activation, indicating the ability for cells to decode
HIF-1α dynamics to specific transcriptional states (79). There
is also evidence in the HIF-1α pathway of cells distinguishing
different oxygen tensions, as different amounts of hypoxia lead
to the differential expression of certain HIF-1α target genes
(80, 81). Although the mechanism the authors propose relies
on another protein, factor inhibiting HIF, it nonetheless
demonstrates that cells are able to discriminate multiple
physiological levels of hypoxia.

When using a physiological stimulus, in this case IFN-γ, we
observed a far greater amount of heterogeneity and a signifi-
cant oscillatory component to the response. This is in agree-
ment with a recently published study describing the presence
of oscillatory HIF-1α-dependent transcription in response to
sustained hypoxia (79). In that work, the authors found that
the oscillatory HIF-1α-dependent transcription was associated
with cell cycle progression. It is possible that the oscillations
mediate a similar phenotype in this system. It is also relevant
to consider the role of cross talk, and the possibility that the
oscillations observed have downstream consequences for other
signaling pathways, such as NF-κB, glucocorticoid signaling,
and circadian signaling (82–86). It is known, for example, that
HIF-1α accumulation induces stabilization of p53 (87, 88).
Furthermore, as modeled by Bagnall and colleagues, pulsatile,
J. Biol. Chem. (2023) 299(4) 104599 9
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Figure 5. A minimal metabolic model predicts that only cells with high HIF-1α activation alter mitochondrial metabolism. A, measured single-cell
HIF-1α activation was used as an input to a minimal metabolic model to predict the metabolic phenotype of each cell. Not all reactions shown; see Fig. S17
for more details. Mean HIF-1α activation compared with mean fraction of glucose fermented (B), mean fraction of ATP derived from glycolysis (C), mean
whole cell NAD+/NADH ratio (D), and mean whole cell ATP/ADP ratio (E) for cells with high (orange) and low (gray) HIF-1α activation. Each point represents a
single cell. Lines represent linear regressions for each group of cells. F, example single-cell NAD+/NADH ratio traces showing difference for a cell with high
(orange) and low (gray) HIF-1α activation. G, comparison of NAD+/NADH ratio in the mitochondrial and cytoplasmic compartments for cells with high
(orange) and low (gray) HIF-1α activation. Distributions are the single-cell probability densities. H, comparison of mitochondrial membrane polarization and
the NAD+/NADH ratio for cells with high (orange) and low (gray) HIF-1α activation. Distributions are the single-cell probability densities. I, comparison of the
maximum glycolytic flux and minimum tricarboxylic acid flux for cells with high (orange) and low (gray) HIF-1α activation. Distributions are the single-cell
probability densities.
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rather than sustained, HIF-1α activity leads to differences in
p53 activation profiles (26). Therefore, given the extensive
cross talk that is known to exist between HIF-1α and other
pathways, it may be that the oscillations we measured have a
direct impact on the regulation of other pathways.

It is also interesting to consider the delay of multiple hours
in the IFN-γ-induced HIF-1α response, especially considering
reports that IFN-γ-induced increase in glycolysis occurs within
minutes of stimulation (89). Although these differences are
possibly due to different cell types and experimental modal-
ities, it is still valuable to consider the biological implications.
It is possible that multiple transcription factors act in unison to
10 J. Biol. Chem. (2023) 299(4) 104599
regulate metabolism over long periods of time. For example,
FOXK1 and FOXK2 are known to regulate aerobic glycolysis
on timescales shorter than the time we observed was required
for HIF-1α induction (90). This could suggest that HIF-1α has
more of a role in sustaining metabolic changes or inducing a
different metabolic state at a later time. This is also in accor-
dance with findings that the induced accumulation of succi-
nate is required for HIF-1α accumulation, showing that
metabolic changes occur before HIF-1α accumulation (11, 91).

Finally, we use our measured single-cell HIF-1α activation
dynamics as an input to a mathematical model of metabolism
and show that, while all cells with HIF-1α activation show an
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increase in glycolysis, only cells with very high HIF-1α acti-
vation are able to downregulate mitochondrial metabolism.
We note that the model does not expressly account for
changes in enzyme concentration or allosteric regulation and
therefore may miss important phenomena associated with
HIF-1α regulation. Nonetheless, the model was able to reca-
pitulate a number of phenotypic observations. One such result,
which has also been reported elsewhere, is a reduction in
mitochondrial oxidative phosphorylation associated with HIF-
1α activation (92, 93). Our modeling results suggest that this
reduction only occurs in cells with high HIF-1α activation.
This mitochondrial phenotype has also been associated with
an inability of M1 macrophages to reprogram to M2 macro-
phages (94). One might therefore speculate that the cells with
less HIF-1α activity may be more plastic and are able to as-
sume a different phenotype after proinflammatory stimulus. In
this manner, while part of the population is ready to assume a
tissue-remodeling phenotype, another part of the population
could ensure a continued inflammatory response.

Finally, there are many other contexts in which studying
single-cell HIF-1α dynamics is likely to be important. For
example, other immune cells, such as dendritic cells (95),
neutrophils (15), and T cells (96, 97) are known to activate
HIF-1α. In addition, some pathogens are also known to
directly induce HIF-1α stabilization (98, 99) or use HIF-1α to
regulate expression of viral genes (100, 101). Hypoxia is also a
common feature of different physiological niches, such as the
bone marrow or inflamed tissues, and a recent study has
revealed the role of oscillatory HIF-1α-dependent transcrip-
tional activity in the context of sustained hypoxia (79).
Therefore, we hope that our reporter will be a useful tool to
study HIF-1α activation in a variety of contexts.

Experimental procedures

Cloning

Plasmids and primers were designed using Benchling. All
PCR reactions were conducted using PrimeStar Max (Takara
Bio, R045A). Murine HIF-1α cDNA was purchased from the
Mammalian Gene Collection sold by Horizon (MMM1013-
202764365). All reporter constructs were first cloned into a
pENTR backbone (Invitrogen K240020) and then moved to a
lentiviral backbone using a Gateway LR reaction (Thermo
Fisher Scientific 11791020). The lentiviral reporter plasmid has
been made available on Addgene.

Mammalian cell culture

RAW 264.7 cells from ATCC (ATCC TIB-71) were used.
Cells were grown in Dulbecco’s modified Eagle’s medium
(Thermo Fisher Scientific 11965118), supplemented with 1X
penicillin/streptomycin, 2 mM L-glutamine, and 10% fetal
bovine serum. Cells were incubated at 37 �C and 5% CO2 and
subcultured every 2 days upon reaching 80% confluence.
Accutase (Sigma-Aldrich A6964) was used to remove adherent
cells for subculturing. Cells used for cell line generation and
experiments were used at passage numbers well below previ-
ously identified limits (102). Stimulation of cells was
conducted with DMOG (Cayman Chemical 71210) or IFN-γ
(PeproTech 315-05).

Cell line generation

Lentivirus was generated in Lenti-X 293T cells using
second-generation viral packaging plasmids (Addgene #12259,
12260). Viral packaging plasmids and the target lentiviral
vector, constituting 2 μg of total DNA, were transfected into
Lenti-X 293T cells on 6-well tissue culture treated plates using
Lipofectamine 2000 (Thermo Fisher Scientific 11668019).
Cells were incubated for 48 h at 37 �C and 5% CO2. The
medium containing lentivirus was then harvested and filtered
through a 0.45-μm filter. Aliquots, 200 μl, of virus were used
for infection immediately or stored at −80 �C for up to
2 months. For infection, RAW 264.7 cells were plated at a
density of 12,500 cells per well in 12-well tissue culture treated
plates 24 h prior to infection. On the day of infection, the
medium was replaced to the viral medium harvested before,
supplemented with fresh Dulbecco’s modified Eagle’s medium
to a volume of 2 ml and 2 μl of polybrene (Sigma-Aldrich TR-
1003). Cells were then spun at 2900g and 34 �C for 90 min and
then incubated for 4 to 6 h at 37 �C and 5% CO2. Finally, the
cells were washed once in PBS and the medium replaced to
fresh 10% DFPG. Selection was started the following day using
2 μg/ml puromycin for 24 to 72 h or 1.5 μg/ml blasticidin for
72 to 96 h.

Live-cell imaging

Cells were plated in 10% DFPG at a density of 10,000 to
15,000 cells per well on a fibronectin-coated glass-bottom 96-
well plate 24 h prior to imaging. One hour prior to imaging
cells were washed once with PBS and the medium replaced to
imaging medium: Fluorbrite (Thermo Fisher Scientific
A1896701) supplemented with 10 mM Hepes buffer, 2 mM L-
glutamine, and 1% fetal bovine serum. Imaging was conducted
using a Nikon Eclipse Ti fluorescence microscope equipped
with a 20×/0.75 numerical aperture objective. Images were
acquired using an Andor Neo 5.5 sCMOS camera with 3 × 3
binning. The microscope was also equipped with environ-
mental and temperature control to maintain the cells at 37 �C
and 5% CO2. Imaging was automated using Micro-manager
(103). Exact acquisition parameters varied slightly between
experiments but typically included 3 to 6 positions per well, an
interval of 10 to 15 min between frames, and a total imaging
time of 3 to 24 h.

Immunofluorescence

Cells were plated in 10% DFPG at a density of 10,000 to
15,000 cells per well on a fibronectin-coated glass-bottom 96-
well plate 24 h prior to the start of the experiment. At the end
of the experiment, the cells were washed once in PBS, then
fixed with 4% paraformaldehyde for 15 min at room temper-
ature. Cells were then washed in PBS three times followed by
permeabilization in 0.1% Triton X-100 in PBS for 15 min at
room temperature. Next, blocking was performed using 10%
donkey serum (Jackson ImmunoResearch 017-000-001) in PBS
J. Biol. Chem. (2023) 299(4) 104599 11
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for 1 h at 4 �C. All antibody incubations were also done in 10%
donkey serum in PBS. First, primary antibody staining was
conducted overnight at 4 �C using a rabbit monoclonal anti-
HIF-1α antibody (Cell Signaling Technology 36169). Following
the primary stain, cells were washed three times in PBS at
room temperature, then incubated with a goat anti-rabbit IgG
conjugated with Cy5 (Abcam ab97077) for 1 h at 4 �C, fol-
lowed again by three room temperature PBS washes. If
required, cells were then incubated with 50 ng/ml Hoechst
33342 for 15 min and washed with PBS again. Imaging was
conducted the same as described for live-cell imaging imme-
diately following the last incubation step.

Image analysis

Images were analyzed using CellTK version 0.4.2 (https://
github.com/sjeknic/CellTK). First, images were corrected for
illumination bias using reference images collected using fluo-
rescent dyes. Next, images were segmented to mark pixels that
corresponded to a cell nucleus and pixels that corresponded to
background. To accomplish this, a UNet-based convolutional
neural net was first used to predict the probability that each
pixel in the nuclear marker image corresponded to a nucleus
(104). A constant threshold was applied to create seed regions
pixels that had a probability of being a nucleus of at least 0.98.
These seed regions were expanded using an iterative
watershed-based method to include neighboring pixels with
probability at least 0.67. Finally, contiguous regions were
labeled with a unique pixel value and only regions within
specified area and solidity (ratio of convex area to area)
thresholds were kept.

Next, the segmented regions were tracked in consecutive
frames. This was accomplished using a recently published
approach (105). Cells that were missing or untracked in two or
more frames were excluded. Although this tracking approach
can account for cell division, in practice only one of the
daughter cells was included in the final data set. Finally, pixel
intensity values for both fluorescent channels in each tracked
region were recorded and used in further downstream analysis.
Activation values shown are median FITC intensity divided by
median CFP (cyan fluorescent protein) intensity. Peak finding
was conducted with a convolutional neural net (Fig. S22, see
Supporting information for more details).

Modeling of DMOG-mediated HIF-1α activation

The minimal model of HIF-1α activation was built based on
mass-action kinetics and implemented in Python 3.8. Nu-
merical integration was conducted with the solve_ivp function
in Scipy using the LSODA solver (106). Parameters were fit to
match the median solution at each DMOG concentration.
Parameter fitting was first done manually to find a generally
correct solution, which was then used as the starting point for
gradient descent to optimize the parameter fit. Fitting of in-
dividual cell traces was done using the curve_fit function in
Scipy, wrapped around the solve_ivp function. HIF-1α-medi-
ated negative feedback through induction of PHDs was not
included in the model for a few reasons. One, we found that
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the model without negative feedback was sufficiently able to
capture the behavior we were interested in and thus favored it
because it was the simplest model. Two, by focusing only on
the first few hours of the HIF-1α response, we observed that
the negative feedback did not have a significant effect in most
cells. Finally, including negative feedback expands the
parameter space and complicates the fitting such that the
fitting algorithm failed for more cells.

For all analyses related to active and inactive cells, we
normalized all traces to the initial HIF-1α activation. Cells
were marked as active if they sustained activation 25% greater
than the initial activation for at least ten time points. Intensity
thresholds ranging from 15% to 50%, and duration thresholds
ranging from 5 to 15 frames, were also tested and led to
consistent trends.

Channel capacity calculations

There are multiple methods for estimating channel capacity.
We used a binning approach similar to previously published
papers (51, 53, 67). Briefly, individual cells were binned into a
set number of bins based on their HIF-1α activity or other
metric, as stated. The number of bins was selected to be suf-
ficiently high to capture the relationship while also ensuring
the mutual information of randomized data was essentially
zero (Fig. S23). A contingency table was built and used in
accordance with Equation 1 to calculate mutual information.
All values presented in this work are corrected for bias due to
limited sample size. This bias was estimated by repeatedly
jackknife sampling different fractions of the data, fitting a
linear regression, and extrapolating to infinite sample size (51)
(Fig. S24). Please refer to the Supporting information for more
details regarding our information theory calculations.

Metabolic modeling

A previously existing MATLAB model of HIF-1α-regulated
metabolism was implemented in Python 3.8. The parameters
were fit by the original authors such that the model exhibited
experimentally measured steady-state metabolite concentra-
tions. The HIF-1α effects were modeled as a Hill function
mediating an increase or decrease in the kinetic rate of the
reactions in question. We confirmed that our implementation
of the model was equivalent to the original by recreating fig-
ures from the original paper.

The measurements from the reporter are relative mea-
surements, therefore we needed to scale the measurements to
the range of concentrations used in the model. We scaled each
trace to a [0, 1] range and then multiplied by the mean active
HIF-1α concentration in the model. The lower bound of the
range was set with the smallest HIF-1α value measured. For
the upper bound, we used three standard deviations above the
mean HIF-1α activation of all cells. In all, this produced a
range of HIF-1α concentrations that were well within the
relevant range of the model, and nearly all cells with HIF-1α
activation registered some metabolic changes in the model.
We tested other, similar methods for scaling the concentra-
tions and found consistent results.

https://github.com/sjeknic/CellTK
https://github.com/sjeknic/CellTK
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For the results in Figure 5, cells with high activation were
defined as cells that reached 80% or greater of the maximum
possible HIF-1α activation in the model at any time point. All
other cells were taken to be cells with low or no activation.
Other threshold values were tested as well and provided
consistent results.
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