Bioinformatics, 38(7), 2022, 1972-1979
https://doi.org/10.1093/bioinformatics/btac049
Advance Access Publication Date: 4 February 2022
Original Paper

OXFORD

Systems biology
Vivarium: an interface and engine for integrative

multiscale modeling in computational biology

Eran Agmon ® "*, Ryan K. Spangler ® ", Christopher J. Skalnik ® !, William Poole ® ?,

Shayn M. Peirce ® 3, Jerry H. Morrison @ ' and Markus W. Covert ® '*

'Department of Bioengineering, Stanford University, Stanford, CA 94305, USA, Computation and Neural Systems, California Institute of
Technology, Pasadena, CA 91125, USA and ®Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903,
USA

*To whom correspondence should be addressed.
Associate Editor: Alfonso Valencia

Received on May 1, 2021; revised on December 14, 2021; editorial decision on January 22, 2022; accepted on January 28, 2022

Abstract

Motivation: This article introduces Vivarium—software born of the idea that it should be as easy as possible for
computational biologists to define any imaginable mechanistic model, combine it with existing models and execute
them together as an integrated multiscale model. Integrative multiscale modeling confronts the complexity of biol-
ogy by combining heterogeneous datasets and diverse modeling strategies into unified representations. These inte-
grated models are then run to simulate how the hypothesized mechanisms operate as a whole. But building such
models has been a labor-intensive process that requires many contributors, and they are still primarily developed
on a case-by-case basis with each project starting anew. New software tools that streamline the integrative model-
ing effort and facilitate collaboration are therefore essential for future computational biologists.

Results: Vivarium is a software tool for building integrative multiscale models. It provides an interface that makes in-
dividual models into modules that can be wired together in large composite models, parallelized across multiple
CPUs and run with Vivarium'’s discrete-event simulation engine. Vivarium’s utility is demonstrated by building com-
posite models that combine several modeling frameworks: agent-based models, ordinary differential equations, sto-
chastic reaction systems, constraint-based models, solid-body physics and spatial diffusion. This demonstrates just
the beginning of what is possible—Vivarium will be able to support future efforts that integrate many more types of
models and at many more biological scales.

Availability and implementation: The specific models, simulation pipelines and notebooks developed for this article
are all available at the vivarium-notebooks repository: https://github.com/vivarium-collective/vivarium-notebooks.
Vivarium-core is available at https://github.com/vivarium-collective/vivarium-core, and has been released on Python
Package Index. The Vivarium Collective (https://vivarium-collective.github.io) is a repository of freely available
Vivarium processes and composites, including the processes used in Section 3. Supplementary Materials provide
with an extensive methodology section, with several code listings that demonstrate the basic interfaces.

Contact: agmon.eran@gmail.com or mcovert@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction networks (Yang et al., 2019). Although these models have been suc-

Our understanding of biological phenomena stands to be dramatic-
ally improved if we can adequately represent the underlying systems,
mechanisms and interactions that influence their behavior over time.
Generating these representations, most commonly via mathematical
and computational modeling, is made challenging by the complex
nature of such systems. The most common modeling approaches
today are statistical, extracting meaning from observational data by
fitting functions such as regression, cluster analysis and neural

cessful at approximating correlations among observed variables, the
structures of the models are not easily interpretable, making it diffi-
cult to determine biological mechanism. In contrast, mechanistic
models are designed to reproduce observed data by representing
causality (Phair, 2014). Thus, the mathematical form and parame-
ters of mechanistic models are testable hypotheses about the
system’s underlying interactions. In other words, mechanistic
models can provide unique insights that can gather more evidence

©The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1972

€202 AeN Z| uo Jasn Aysioalun piojuels Aq 6012259/226L/L/8E/R10IMB/SIIBULIOJUIOIG/WOD"dNO"OlWapese//:sdy Wolj papeojumoq

http://orcid.org/0000-0003-1279-2474
https://orcid.org/0000-0002-6080-3142
http://orcid.org/0000-0002-6344-7331
http://orcid.org/0000-0002-2958-6776
http://orcid.org/0000-0001-5857-5606
https://orcid.org/0000-0001-9414-6999
https://orcid.org/0000-0002-5993-8912
https://github.com/vivarium-collective/vivarium-notebooks
https://github.com/vivarium-collective/vivarium-core
https://vivarium-collective.github.io
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/

Vivarium: an interface and engine for integrative multiscale modeling 1973

for or refute hypotheses, suggest new experiments and identify
refinements to the models. Some exciting progress has recently been
made in combining both strategies (Raveh et al., 2021; Yang et al.,
2019; Yuan et al., 2021).

Mechanistic models in computational biology have deepened
our understanding of diverse domains of biological function, from
the macromolecular structure and dynamics of a bacterial cytoplasm
with atomistic models (Yu et al., 2016), the lysis/lysogeny switch of
bacteriophage lambda with a stochastic models (Arkin ez al., 1998),
bacterial growth in different conditions with constraint-based meta-
bolic models (Edwards et al., 2001), and cell-based models of quo-
rum sensing in bacterial populations (Melke et al., 2010). However,
such models generally target a mechanism in isolation, with a single
class of mathematical representation, and focus on a narrow range
of resulting behavior. A logical next step in the development of com-
putational biology is to combine these components and build upon
their insights, so we can better understand how their mechanisms
operate together as integrated wholes.

Integrative models combine diverse mechanistic representations
with heterogeneous data to represent the complexity of biological
systems. There have been several such efforts including the integra-
tive modeling of whole-cells (Karr ez al., 2012; Macklin ez al.,
2020), macro-molecular assemblies (Ward et al., 2013), microbial
populations (Harcombe et al., 2014) and even some work toward
whole-organisms (Thiele ez al., 2020). They have shown some suc-
cess in capturing the emergence of complex phenotypes—but many
challenges remain to the extensibility of the resulting models and to
their widespread adoption. This results in a loss of research momen-
tum and an apparent ceiling on model complexity. The ideal model
would be not only be integrative in terms of incorporating diverse
mathematical approaches and biological functions, but also in terms
of bringing together the vast scientific expertise across the globe.
What is therefore required is a methodology that brings molecules
and equations, as well as labs and scientists, together in this effort.

In this regard, software infrastructure can greatly facilitate the
development of integrative models. Two major areas of develop-
ment in this space are standard formats and modeling frameworks.
Standard formats allow models to be shared between different soft-
ware tools—just as HTML allows web pages to be viewed across
multiple browsers and devices. Popular formats include FASTA for
sequence encoding (Pearson and Lipman, 1988), Systems Biology
Markup Language (SBML) for reaction network models (Keating
et al., 2020) and Synthetic Biology Open Language (SBOL) for
structural and functional information (Bartley et al., 2015). Model
frameworks provide generic functions and objects that can be
changed by users to write and simulate custom models within that
framework. These include libRoadRunner for systems of differential
equations (Somogyi et al., 2015), COPASI for stochastic simulations
(Hoops et al., 2006), Smoldyn for particle-based models (Andrews
et al., 2010), COBRA for constraint-based metabolic models
(Ebrahim et al., 2013), MCell for Monte Carlo (Stiles et al., 2001),
ECell for stochastic reaction-diffusion (Arjunan and Tomita, 2009),
cellPACK for spatial packing of molecular shapes (Johnson et al.,
2015), CompuCell3D for cellular Potts (Swat et al, 2012),
PhysiCell for physical models of multicell systems (Ghaffarizadeh
et al., 2018) and BioNetGen for rule-based models (Faeder et al.,
2009). However, committing to one approach can exclude insights
that could be gained from others, and to date there is no established
method to connect different approaches.

What we therefore need is a software solution for heterogeneous
model integration, which allows many modeling efforts to be
extended, combined and simulated together. This hands control of
model development to a community of users that can build their
own modules and wire them together, rather than an in-house devel-
opment team that maintains a rigid modeling environment. A shift
to modular design can breed an ecosystem of models, which would
interact with each other in large integrative models and possibly
form symbioses of models that are known to work well together.
The community of users would impose a type of selection pressure
on these models to continually improve their accuracy and their
reach.

This article introduces Vivarium—software born of the idea that
it should be as easy as possible for computational biologists to define
any mechanistic model, combine it with existing models and execute
them together as an integrated multiscale model. It can apply to any
type of dynamic model—ordinary differential equations (ODEs),
stochastic processes, Boolean networks, spatial models and more—
and allows users to plug these models together in integrative, multi-
scale representations. Similar approaches have been developed for
computer modeling of cyber-physical systems with Ptolemy II (Eker
et al., 2003) and Modelica’s Functional Mock-up Interface
(Blockwitz et al., 2012). Recently, related methods have also begun
to be applied to synthetic and systems biology with modular envi-
ronments such as CellModeller (Rudge ez al., 2012) and Simbiotics
(Naylor et al., 2017).

By explicitly separating the interface that connects models from
the frameworks that implement them, Vivarium establishes a modu-
lar design methodology that supports flexible model development.
Vivarium-core is a software library that provides the interface for in-
dividual models and for composite models—bundles of models that
come wired together. Vivarium-core includes a discrete-event simu-
lation engine, which takes input models, combines them and runs
them as coupled systems evolving over multiple time-scales. The
plug-in system lowers the barrier to contribution, so that new users
can more easily encode new processes and plug them into existing
systems. We also present the Vivarium Collective, a registry of
Vivarium-compatible models that can be imported into new proj-
ects, reconfigured and recombined to generate entirely new models.
The software has been designed to make it straightforward to pub-
lish Vivarium models as Python libraries on the Python Package
Index to share with the community to plug into existing public or
private models.

This article is organized as follows: Section 2 provides a high-
level overview of Vivarium’s features and introduces its termin-
ology. A more detailed methodology is provided in Supplementary
Materials, where we build an example system, starting with a deter-
ministic model of unregulated gene expression, and then adding
complexity through stochastic multitime stepping, division and hier-
archical embedding in a shared environment. We note here that all
of the examples we consider—both in the main text and
Supplementary Materials—are available in Jupyter notebooks,
designed so that readers can follow along in the code and execute
the examples that are described in this article. Using the tutorial and
the corresponding Jupyter notebooks in combination, we hope that
any prospective user of this software can get up-and-running very
quickly. Section 3 demonstrates the integrative power of Vivarium,
by combining several modeling paradigms into a composite model,
including a genome-scale flux-balance model of metabolism, a sto-
chastic chemical reaction network for gene expression and transport
kinetics, and a solid-body physics engine for spatial multicell inter-
actions. Finally, Section 4 discusses scalability and current
limitations.

2 Vivarium overview

Vivarium does not include any specific modeling frameworks, but
instead focuses on the interface between such frameworks, and pro-
vides a powerful multiscale simulation engine that combines and
runs them. Users of Vivarium can therefore implement any type of
model module they prefer—whether it is a custom module of a spe-
cific biophysical system, a configurable model with its own standard
format, or a wrapper for an off-the-shelf library. The multiscale en-
gine supports complex agents operating at multiple timescales, and
facilitates parallelization across multiple CPUs. A glossary of key
terms and definitions is included in Supplementary Materials; when
first introduced here, they are shown in italics. All of the classes and
methods are described in further detail in Supplementary Materials
and are demonstrated in the Supplementary Jupyter notebooks.
Vivarium’s basic elements are processes and stores (Fig. 1a and
b), which can be thought of as software implementations of the up-
date functions and state variables of dynamical systems. Consider
the difference equation Ax = f(r,x)-At. A Vivarium store is a

€202 ABIN 2| uo Josn Ayis1aAluN plojuels AQ 6012259/2.61/L/8€/2I0IME/SOIBWLIOJUIOIG /WO dNO"D1WSPED.//:SA)Y WO PapeojuMod

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data

schema

1974 E.Agmon et al.
(@) Process (c) Composite (a) (c)
At state
port l :
parameters, translation time
upaate function -
stochastic H
(b) Store ‘\‘ update transcription T T IT_t)
time
‘ (b)
(d)
state variables, - At [At At

O

- - outer

(d) (e)

e

boundary

inner

== OO0

Compartment Hierarchy

Fig. 1. Vivarium’s model interface, illustrating the formal structure of the frame-
work. (a) A Process, shown as a rectangular flowchart symbol, is a modular models
that contain the parameters, an update function and ports. (b) A Store, shown as the
flowchart symbol for a database, holds the state variables and schemas that deter-
mines how to handle updates. (c) Composites are bundles of processes and stores
wired together by a bipartite network called a topology, with processes connecting
to stores through their ports. (d) Compartments are processes and stores connected
across a single level. Processes can be wired across compartments through boundary
stores. (¢) Compartments are embedded in a hierarchy—depicted as a hierarchical
network with discrete layers. Outer compartments are shown above and inner com-
partments below

computational object that holds the system’s state variables x. A
Vivarium process is a computational object that contains the update
function f, which describes the inter-dependencies between the vari-
ables and how they map from one time (¢) to the next (¢ + At).
Processes are configured by parameters r, which give the update
functions a distinct shape of mapping from input values to output
values.

A step is a type of process for models that are not time-step-
dependent (Fig. 2d). For example, after the counts of molecules are
updated by dynamic processes, it might be necessary to calculate the
resulting change in total cell mass. A mass step would read all the
updated molecular counts, and multiply by molecular weight to re-
calculate cell mass. A second step could then read cell mass, and use
it to update other values such as cell volume, length and width based
on a mathematical model of cell shape. Steps run in a fixed order
after the dynamic processes have finished. This allows users to im-
plement a type of dependency graph—for example the mass step
runs before the cell shape step. Steps have been used to translate
states between different modeling formats, implement lift or restric-
tion operators to translate states between scales, and as auxiliary
processes that offload complexity. In principle, steps could also be
used for statistical models that sample from an underlying distribu-
tion, or structural models that apply various constraints to deter-
mine spatial positioning of 3D shapes such as atoms or molecules
into provided volumes (Johnson et al., 2015; Ward et al., 2013).

Processes include ports, which allow users to wire processes to-
gether through variables in shared stores. Variables in a store each

l [pmcesses:m:processes h—>
fime

parallel f \ -
I I mass | |shape
=Y -

steps

(e)
S
a e

4

[h

2

L

4

» —/
a, divide | ad.engulfa, | a burst

1

r N

. 7
a

>

tima

Fig. 2. The vivarium engine takes the system and runs it forward in time. (a) A basic
simulation loop has processes view the states through their ports, run their update
function for a given time step, and return an update. (b) Any process can run in par-
allel on an OS process, which is placed on a long-running CPU thread, with state
views and updates handled by message-passing. This allows for scalable simulation
on computers with many CPUs. (c) Processes can run at different time scales, and
using variable time steps. Here, a translation process is shown operating at fixed
time steps, and stochastic transcription is operating at variable time steps deter-
mined based on the state of the system at each time step’s start. (d) Steps are a sub-
class of Process, used for models that are not time-step-dependent. Steps run at the
end of every time step, in an order determined by a directed acyclic graph (DAG)
which we call a flow. Steps calculate additional states from the states updated by the
dynamic processes. In this figure a dynamic process runs for At, followed by a mass
step and a shape step. (e) A series of hierarchy updates depicts a compartment added
by a divide update, then a compartment subsumed into a neighbor by an engulf up-
date, then the engulfed compartment is deleted with a burst update. Other hierarchy
updates include merge, add or delete

have a schema, which declare the data type and methods by which
updates to the variable are handled—this includes methods such as
updater, for applying updates to the variables, and divider for gener-
ating daughter states from a mother state. A topology (short for
‘process-store interaction topology’) is a bipartite network that
declares the connections between processes and stores, and which is
compiled to make a composite model with multiple coupled proc-
esses. Ideal processes do not have hidden private states, and expose
their states by externalizing them in stores. But sometimes private
states are unavoidable, and could actually be used to improve per-
formance since they do not have to synchronize. Externalizing state
variables in stores allows other processes to wire to the same varia-
bles, which couples those processes—they read from and update
these same variables as the simulation runs forward in time.
Processes can be connected across a hierarchical representation
of nested compartments. Vivarium uses a bigraph formalism
(Milner, 2009)—a network with embeddable nodes that can be
placed within other nodes, and which can be dynamically restruc-
tured. Through their topologies, processes act as the hyperlinks of

€202 ABIN 2| uo Josn Ayis1aAluN plojuels AQ 6012259/2.61/L/8€/2I0IME/SOIBWLIOJUIOIG /WO dNO"D1WSPED.//:SA)Y WO PapeojuMod

Vivarium: an interface and engine for integrative multiscale modeling 1975

the bigraph. This contrasts with the standard ‘flat’ network that has
all nodes at a single level, and with fixed connectivity. A compart-
ment is a store node with internal nodes, which can include its own
internal processes and the standard variable-containing stores
(Fig. 1d). A hierarchy is a place graph, or directory structure, which
defines inner/outer nesting relations between compartments
(Fig. 1e). Boundary stores connect processes across compartments in
a hierarchy—these make compartments themselves into pluggable
models that can be embedded in a hierarchy. Just as with biological
systems, compartments are the key to a model’s complexity—they
organize systems into hierarchies of compartments within compart-
ments, with modules that can be reconfigured and recombined.

In practical terms, this means that Vivarium facilitates collabora-
tive model development by simplifying the incorporation of alter-
nate sub-models. This allows users to (i) write their own processes,
composites and update methods, (ii) import libraries with processes
developed for different projects, (iii) reconfigure and recombine
existing processes and (iv) make incremental changes (add, remove,
swap, reconfigure) and iterate on model designs that build upon pre-
vious work. Auxiliary processes are provided to offload complexity
from the main processes.

The Vivarium engine is provided with the processes and a top-
ology, it constructs the stores based on the processes’ declared sche-
mas for each port, assembles the processes and stores into a
hierarchy, and executes their interactions in time (Fig. 2a). Vivarium
aims to support large models with thousands of integrated mathem-
atical equations. To accommodate these demands, Vivarium can dis-
tribute processes onto different OS processes (not to be confused
with a Vivarium process) (Fig. 2b). Communication between proc-
esses on separate OS processes is mediated by message passing with
Python’s multiprocessing library. Simulations have run on Google
Compute Engine node with hundreds of CPUs (Skalnik et al.,
2021)—which scale the computation without any additional run
time until there are as many processes as CPUs, after which some
processes have to be run sequentially.

The engine is a discrete-event simulator—it advances the simula-
tion forward by tracking the global time, triggering each process at
the start of its respective time step, retrieving updates at the end of
the time step, and passing these updates to the connected stores
(Fig. 2c). Processes can declare their own required time step, and
can update their time steps during runtime to support adaptive time
steps. The structure of a hierarchy is also dynamic and allows for
stores, processes and entire compartments to be created, destroyed
or moved during runtime. This allows for modeling important
biological mechanisms that include forming, destroying, merging,
division, engulfing and expelling of subcompartments (Fig. 2d).

3 Multiparadigm composites

In this section, we demonstrate the power of Vivarium by applying
it to complex, real-world examples. Specifically, we use Vivarium
to integrate several modeling paradigms, building wrapper proc-
esses around existing libraries and wiring them together in a large
composite simulation. COBRA is used for flux-balance analysis
(Ebrahim ez al., 2013), Bioscrape is used to simulate chemical reac-
tion networks (Swaminathan et al., 2017), and pymunk is used as a
solid-body physics engine for spatial multicell physics (Blomgvist,
2019). The implementation of each of these separate processes is
briefly described here, and in greater detail in Supplementary
Materials; however, our primary aim in this section is to highlight
the integrated, multiparadigm model of an Escherichia coli colony
with many individual cells in a spatial environment, that collective-
ly undergo a lactose shift in response to glucose depletion. For
interested readers, we recommend the Supplementary python note-
books, which show the incremental development steps, describe
strategies for their integration, and display the resulting emergent
behavior.

When grown in media containing the two sugars glucose and lac-
tose, a colony of E.coli will first consume only the glucose until it is
depleted; the colony will then enter a lag phase of reduced growth,
which is followed by a second phase of growth from lactose uptake.

During the glucose growth phase, the expression of the lac operon is
inhibited while glucose transporters GalP and PTS are expressed.
When external glucose is depleted, cells at first do not have
the capacity to import lactose. The lac operon controls three genes:
lacY (Lactose Permease) which allows lactose to enter the cell, lacZ
(p-Galactosidase) which degrades the lactose, and lacA (Galactoside
acetyltransferase) which enables downstream lactose metabolism.
Once the operon is activated and proteins are expressed, the metab-
olism shifts to lactose and growth resumes. See Santillan and
Mackey (2008) for a more comprehensive overview. For this ex-
ample, a flux-balance model of E.coli is used to model overall cellu-
lar metabolism, while the details of the glucose-lactose regulatory,
transport and metabolic circuit are represented by a chemical reac-
tion network.

3.1 Individual paradigms

The individual processes were built with wrappers around existing
modeling libraries, which were imported into this article’s project
repository and wired in a large integrative model. These are
separately available for re-use in the libraries vivarium-cobra, vivar-
ium-bioscrape and vivarium-multibody. Supplementary Material
provides additional details on each of the processes, and shows each
being run on its own.

Flux-balance analysis with COBRA. Flux balance analysis (FBA)
is an optimization-based metabolic modeling approach that takes
network reconstructions of biochemical systems, represented as a
matrix of stoichiometric coefficients and a set of flux constraints,
and applies linear programming to determine flux distributions
(Orth et al., 2010). FBA is made dynamic (called dFBA) by iterative-
ly re-optimizing the objective with updated constraints at every time
step (Varma and Palsson, 1994); these constraints change with en-
vironmental nutrient availability, gene regulation or enzyme kinet-
ics. We developed a Vivarium process that provides a wrapper
around COBRApy (Ebrahim ez al., 2013), an API which can be ini-
tialized with genome-scale metabolic flux models (King et al.,
2016). The model used here is iAF1260b, which includes 2382 reac-
tions and an objective that includes the production of 67 molecules
(Feist et al., 2010).

Chemical reaction networks with Bioscrape. To add a chemical
reaction network (CRN) model of transcription, translation, regula-
tion and the enzymatic activity of the lac operon and its resulting
proteins, we turned to a published model (Santillan ez al., 2007),
with many parameters from Wong et al. (1997). We converted this
model to an SBML format using BioCRNpyler—an open source tool
for specifying CRNs (Poole et al., 2020). With the model in SBML,
we ran simulations with a Vivarium process built with Bioscrape
(Swaminathan et al., 2017)—a Python package that supports deter-
ministic and stochastic simulations.

Multicell physics with Lattice. The environment is implemented
using a composite called Lattice from the vivarium-multibody li-
brary that includes multibody and diffusion processes. Multibody is
a wrapper around the physics engine pymunk (Blomqvist, 2019),
which models individual agents as capsule-shaped rigid bodies that
can move, grow and collide. Multibody tracks boundary variables
for each agent: location, length, width, angle, mass, thrust and tor-
que. It applies these to the physics engine, runs it and returns a new
location for each agent. Agents can update their volume, mass and
motile forces. Upon division, a custom divider is applied to the
mother agent’s location of agents, so that daughters are placed end-
to-end in the same orientation as the mother. Diffusion simulates
bounded two-dimensional fields of molecular concentrations. Each
lattice location holds the local concentrations of any number of mol-
ecules, and diffusion simulates how they homogenize across local
sites. Agents can uptake and secrete molecules at their position in
the field using the adaptor process ‘local field’.

Adaptor processes. Each process described above focuses on a
different aspect of cellular physiology and behavior, applies a differ-
ent mathematical representation, and formats its data by different
standards. Integrating them requires data conversions and complex
mapping of assumptions about their shared variables. This is
achieved with a set of adaptor processes which convert between the

€202 ABIN 2| uo Josn Ayis1aAluN plojuels AQ 6012259/2.61/L/8€/2I0IME/SOIBWLIOJUIOIG /WO dNO"D1WSPED.//:SA)Y WO PapeojuMod

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data

1976

E.Agmon et al.

expected units, reference frames, name spaces, data formats and
other representations. Adaptor processes required for integrating the
Bioscrape and COBRA processes with the lattice composite include
processes ‘local field’, ‘mass step’, ‘volume step’ and ‘flux adaptor’

(described below).

(@)

3.2 Model integration and simulation results

The final composite model topology is shown in Figure 3a. The
COBRA process’s metabolism and Bioscrape process’s gene expres-
sion and transport are coupled through a ‘flux bounds’ store, with
the Bioscrape process setting uptake rates with the flux adaptor

agents =4 diffusion
\\
\\\
agent ‘\‘
n \\\
D boundary
. location
i M) deia
species rates species boundary v
boundary
mass
b r
‘*‘4-..,_1_ 4:\\:*\\ I /" ‘\‘
It A U Y '\
&
cobra =1 mess 17 volume [T fux bioscrape to biamass division divide focal ™ cgﬁ:vis
deriver deriver adaptor concs adaptor condition field deriver
(b) 1 agent 12 agents 25 agents 43 agents (d) lac operon RNA (counts)

. . 5
0

glucose concentrations (mmol)

-

external lactose concentrations (mmal)

0.0z 4.02

B-galactosidase {counts)

8.00
Time {hr)
(e)
lactose permease glucose flux

(counts) (mmol/L/s) 0.002
1400 Fpg=
00 0.001
000 0.001
hag 0.001
800 0.001
400 0.001
20 0.000
0

1e3 lactose permease (counts)
| i
10.0 o
8.0
167 local external lactose (counts)
6.0 1
4.0 0
2.0
1e6 lecal external glucose (counts)
0.0 25
0.0
50.0
40 volume (fL}
0.0 15 V / m
10
200
0.0 1e4 total colony mass (fg)
5
1200 20
0
2 4 B B il 12
time (hr)
lactose flux growth rate
(mmol/L/s) 0.070 (fa/s) 0.080
0.060 0.070
0.050 0.060
0.050
0.040
0.040
0.030
0.030
0.020 0.020
0.010 0.010
0.000 0.000

Fig. 3. The full, integrated, stochastic version of the model in the Lattice environment. (a) Hierarchy and topology of the full composite model. The processes and stores are col-
ored by paradigm, with orange nodes associated with COBRA, green nodes associated with Bioscrape, light blue with division, dark blue with multicell physics and chemical

diffusion in the environment, and brown nodes associated with the boundary between

cell and environment. Main processes are highlighted with a thicker outline. (b)

Snapshots of the colony throughout a simulation. Cells colored according to phylogeny with similar colors indicating more closely related cells. (c) The external lactose and
glucose concentration fields over the course of the simulation. (d) Multigenerational timeseries, with variables from all cells shown over time. These colors correspond to the
phylogeny colors of (b). (e) Snapshots of the final simulation state (12.0 h), with various cell states tagged

€20z Ae|n g1 uo Jesn Aysieniun plojuels Aq 601.2259/2261/./8E/0101He/Solewoulol1q/ w0 dno-olwepeoe//:sdjy Wwoly pepeojumod

Vivarium: an interface and engine for integrative multiscale modeling 1977

process, and the COBRA process using them as flux constraints on
the FBA problem. The Bioscrape process calculates deltas for each
reaction’s substrates and products with its stochastic kinetic simula-
tor. These deltas are then used by the flux adaptor to calculate a
time-averaged flux, which it passes to the flux bounds store. The
COBRA process uses these values to constrain the FBA problem’s
flux bounds, which impacts the resulting calculated flux distribution
and the overall growth rate. The Bioscrape and COBRA processes
are also coupled through the transporter proteins, as well as internal
metabolite pools that are built up by metabolism. Changes in the in-
ternal metabolite pools trigger the expression of genes (lac genes in
this example), which in turn influence the kinetic transport rates.
Thus, a causal loop is implemented between the Bioscrape and
COBRA processes.

The stochastic versus deterministic versions of the composite re-
quire different adaptor processes for converting between counts and
concentrations—for example, a ‘field counts step’ process was
required for the stochastic Bioscrape process to read external counts
of glucose and lactose in a cell’s local environment based on the lat-
tice resolution. The deterministic model runs much faster and for a
larger local environment volume—as the local environment volume
increases, this translates to many counts of glucose and lactose that
the stochastic model has to simulate with the Gillespie algorithm,
which is a time-intensive method. Thus, on its own, the stochastic
model is limited to very small external environments and rapid de-
pletion of nutrient. This challenge was overcome by partitioning the
environment with the spatial processes described below. Future
work could improve performance by passing reactions with small
molecular counts to a stochastic simulator, and reactions with large
counts to a deterministic simulator.

To model cell division, ‘division’ and ‘divide condition’ processes
were added to read the agent’s individual cell mass, and trigger div-
ision when that agent reaches 2000fg. The mass step process takes the
counts and molecular weights of these molecules (produced by the
COBRA process), and calculates the total cell mass. The volume step
process then calculates various cell shape properties of the cell from
its mass, including volume, length and width. These are used by the
spatial environment. The divide condition process connects to the
mass variable directly, and waits for it to cross a configured threshold
value. When this threshold is passed, division performs the hierarchy
update to terminate the mother agent and generate two daughters.

The environment consists of 2D arrays of concentration values
for glucose and lactose, which set the local external environments
for individual cell agents. The local field process converts COBRA
process-generated molecular exchanges into concentration changes
in spatial fields. The diffusion process takes the resulting fields,
models diffusion between them, and updates the local external vari-
ables for each agent, so that agents only experience the concentra-
tions at their given location. When agents reach the mass
requirement for division they divide, after which their daughter cells
are placed end-to-end, and their growth pushes upon neighbors with
the multibody process. Thus, cell growth and division lead to the
emergence of a colony with many individuals (Fig. 3b).

The full model was used to simulate a glucose-lactose diauxic
shift (Fig. 3c—e). This simulation is configured with a low initial glu-
cose concentration, so that the onset of lactose metabolism can be
triggered within a few hours of simulation time. As the initial cell
grows from a single agent through multiple generations (Fig. 3b), it
initially takes up glucose and not lactose (Fig. 3¢ and d). The glucose
at locations occupied by cells is locally depleted, but replenished by
diffusion from neighboring locations (Fig. 3¢, top). The spatial vari-
ation in the environment leads to cells experiencing different local
concentrations of glucose and lactose. In response, some lac operon
RNA is expressed, due to stochasticity as well as in response to the
local environment (Fig. 3d). Expression of the lac genes allows lac-
tose to be taken into the cells (Fig. 3c, bottom), but with different
levels of the lac proteins, leading to heterogeneous uptake rates for
glucose and lactose as well as the growth rate (Fig. 3e). By the end
of the simulation, there is still slight glucose uptake; the colony is
growing very slowly and is still shifting between growth phases, but
lactose-driven growth has become the main driver of colony growth.

4 Discussion

This article introduces Vivarium—a software tool for integrative
multiscale modeling designed to simplify how we access, modify,
build upon and integrate existing models. We demonstrated the inte-
gration of several diverse frameworks including deterministic and
stochastic models, constraint-based models, hierarchical embedding,
division, solid-body physics and spatial diffusion. Each process was
developed and tested independently, and was then wired into a
larger composite model that integrates these diverse mechanistic rep-
resentations. While modular software exists that enables simulation
of cellular biophysics and colony growth, such as CellModeller
(Rudge et al., 2012) or Simbiotics (Naylor et al., 2017), or else
allows for the assembly and integration of models-based ODEs rep-
resented in SBML, such as Tellurium (Choi et al., 2018), Vivarium
was designed with the requirements of whole-cell modeling in mind
and as such is a far more general model integration tool. By enabling
interfaces between a wide range of different models and supporting
their interactions in a unified simulation, we believe that Vivarium
will be broadly useful to diverse integrative models and a host of
applications.

Users of any new model integration software should expect sup-
port for simulations of any size and complexity, as well as for arbi-
trary model simulators for different biological processes. Moreover,
these simulations need to be accessible to as many scientists as pos-
sible. To meet these expectations, Vivarium was built to support
three types of scalability: (i) scalable representation, (ii) scalable
computation and (iii) scalable development. Our discussion focuses
on Vivarium’s strengths and limitations with regards to all three
types of scalability, so that future iterations of model integration
software can improve on the design.

Scalable representation. A Vivarium model can be built with
nested hierarchies that represent states and mechanism at multiple
spatial and temporal scales. This multiscale representation was dem-
onstrated by running models at different levels of granularity—from
stochastic CRNs operating on individual molecule counts, to
genome-scale flux models of whole cell metabolic networks, to a
rigid-body physics simulator with many individual cells. Hierarchies
can be updated during run time to simulate behaviors such as div-
ision, merging, engulfing and expelling—this enables the structure
of the model to change, grow and scale as new processes are
launched and the total simulation state evolves.

While agent-based, deterministic, stochastic and optimization-
based models were demonstrated here, they represent only a single
demonstration of the scalability of this framework. As another ex-
ample, we recently applied Vivarium to simulate a multiscale model
o E.coli chemotaxis (Agmon and Spangler, 2020), and also used it
to create the first ‘whole-colony’ simulations of cellular growth on
an agar plate (Skalnik ez al., 2021). In these multicell simulations,
every individual cell is an instance taken from the current version of
the E.coli whole-cell model (Macklin et al., 2020), and Vivarium
integrates the behavior of these large-scale cell models as agents
interacting across a lattice in a shared growth environment.

At present, there are no Vivarium processes to represent model
uncertainty, which arises when some aspects of the system are not
known such as the underlying mechanism or initial state, as can
occur in stochastic models. In principle, if even a single variable in
any component model has uncertainty associated with it, that uncer-
tainty spreads to all variables in the other component models. Thus,
it will be essential to develop specialized Vivarium processes to han-
dle uncertainty in the future. One example might be a type of step,
which would read the system state, evaluate uncertainty and deter-
mine how to proceed—for example by triggering ensembles of proc-
esses to run, analyzing their resulting states, and using these states to
determine the full system update.

Scalable computation. Vivarium’s engine supports distributed
simulation, with each model process running in parallel on its own
OS process, and communicating with the engine through messages.
The engine distributes the processes across a computer architecture
with many CPUs, and runs them in parallel at their preferred time-
scales. One current limitation is that most simulators were not
designed to be called iteratively in rapid succession and have to be

€202 ABIN 2| uo Josn Ayis1aAluN plojuels AQ 6012259/2.61/L/8€/2I0IME/SOIBWLIOJUIOIG /WO dNO"D1WSPED.//:SA)Y WO PapeojuMod

1978

E.Agmon et al.

re-initialized at the start of every time step; doing this can result in
slower run time. One solution to this problem would be to optimize
model simulators such that they can be called iteratively; such opti-
mization already exists for libRoadRunner and COBRA. Additional
performance tests in the Supplementary Material (Supplementary
Section S4) suggest that there are design considerations for what
makes a process optimally composable and parallelizable (discussed
in Supplementary Section S4.2).

A current limit on the size of parallel simulation stems from
Vivarium’s use of the Python multiprocessing library. This allows it
to run on a many-core computer, such as a Google Compute Engine
(up to 224 cores at present). Parallel execution is made possible by
handling communication between processes with message-passing
so that each process can run on its own OS process. The same
message-passing methodology can be used to distribute computation
across many computers in a network, where tools such as mpi4py
(Dalcin et al., 2011) would greatly extend Vivarium’s capabilities
beyond a single compute engine.

Another current limitation is the requirement of Pythonic API,
which renders non-Pythonic simulators harder to integrate.
Requiring a Python API is not unreasonable, as Python has essential-
ly become the standard language for scientific modeling, which
means many simulators are already accessible. There are also libra-
ries that support building Python APIs for other languages—for ex-
ample, pybind11 simplifies how we can call C++ methods using
Python. The next generation of model integration software might
involve a lower-level language, and provide support for network-
based APIs, which would allow processes to run in a distributed
environment in their own native language.

Scalable development. Vivarium was designed to support collab-
orative efforts, in which modular models are reused and recombined
into increasingly complex computational experiments over many
iterations with different contributors. Its emphasis on the interface
between models simplifies the incorporation of alternate sub-
models, which supports incremental, modular development. The
Vivarium Collective is an early version of an online hub for
vivarium-ready projects. When released on the Vivarium Collective,
vivarium projects can be imported into other projects, re-
configured, combined with other processes and simulated in large
experiments. We found that adaptor processes are very useful—they
help convert the units, reference frames, name spaces, data formats
and other representations that are expected by the main mechanistic
processes. Some limitations on development stem from Vivarium’s
flexible design, which delegates most modeling decisions to its users.
Good models can be combined with bad models, timescales can be
mishandled, and there is no built-in framework to hand model un-
certainty, as mentioned above. We believe that in a healthy ecosys-
tem of models, a type of collective selection pressure that will drive
quality up as users choose the best or most appropriate models for
their needs.

Conclusion. As multiscale models such as these are further devel-
oped and expanded, we hope that Vivarium and its successors will
be used to model cell populations, tissues, organs or even entire
organisms and their environments—all of which are based on a
foundation of molecular and cellular interactions, represented using
the most appropriate mathematics and integrated together in unified
composite systems. We look forward to seeing what the community
will produce using these exciting new tools.

Acknowledgements

The authors thank two anonymous reviewers for their thoughtful comments,
which helped shape the discussion. They also thank Jeremy Zucker for report-
ing an error in the vivarium-cobra library, Richard Murray for his discussion
and feedback and the Build-A-Cell community for organizing workshops that
helped motivate the use of Vivarium as a more general model integration soft-
ware tool.

Funding

This work was supported by the Paul G. Allen Frontiers Group via an Allen
Discovery Center at Stanford, as well as NIGMS of the National Institutes of
Health under award number F32GM137464 to E.A.; and NSF grant CBET-
1903477 to W.P. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National Institutes of
Health.

Conflict of Interest: none declared.

References

Agmon,E. and Spangler,R.K. (2020) A multi-scale approach to modeling
E. coli chemotaxis. Entropy, 22,1101.

Andrews,S.S. et al. (2010) Detailed simulations of cell biology with Smoldyn
2.1. PLoS Comput. Biol., 6,e1000705.

Arjunan,S. and Tomita,M. (2009) Modeling reaction-diffusion of molecules
on surface and in volume spaces with the E-Cell system. Nat. Precedings,
1-1.

Arkin,A. et al. (1998) Stochastic kinetic analysis of developmental pathway bi-
furcation in phage A-infected Escherichia coli cells. Genetics, 149,
1633-1648.

Bartley,B. et al. (2015) Synthetic biology open language (SBOL) version 2.0. 0.
J. Integrative Bioinf., 12, 902-991.

Blockwitz,T. et al. (2012) Functional mockup interface 2.0: The standard for
tool independent exchange of simulation models. In: Proceedings of the 9th
International MODELICA Conference, September 3-5, Munich, Germany.

Blomqyvist,V. (2007-2019) Pymunk. http://www.pymunk.org/ (2021, date last
accessed).

Choi,K. et al. (2018) Tellurium: an extensible python-based modeling environ-
ment for systems and synthetic biology. Biosystems, 171, 74-79.

Dalcin,L.D. et al. (2011) Parallel distributed computing using python. Adv.
Water Resources, 34, 1124-1139.

Ebrahim,A. et al. (2013) COBRApy: constraints-based reconstruction and
analysis for python. BMC Syst. Biol., 7, 74.

Edwards,].S. et al. (2001) In silico predictions of Escherichia coli metabolic
capabilities are consistent with experimental data. Nat. Biotechnol., 19,
125-130.

Eker,]. et al. (2003) Taming heterogeneity-the Ptolemy approach. Proc. IEEE,
91, 127-144.

Faeder,].R. et al. (2009) Rule-based modeling of biochemical systems with
BioNetGen. In: Systems Biology. Humana Press, pp. 113-167.

Feist,A.M. et al. (2010) Model-driven evaluation of the production potential
for growth-coupled products of Escherichia coli. Metabolic Eng., 12,
173-186.

Ghaffarizadeh,A. et al. (2018) PhysiCell: an open source physics-based cell
simulator for 3-D multicellular systems. PLoS Comput. Biol., 14,
e1005991.

Harcombe,W.R. et al. (2014) Metabolic resource allocation in individual
microbes determines ecosystem interactions and spatial dynamics. Cell
Rep.,7,1104-1115.

Hoops,S. et al. (2006) COPASI—a complex pathway simulator.
Bioinformatics, 22, 3067-3074.

Johnson,G.T. et al. (2015) cellPACK: a virtual mesoscope to model and visual-
ize structural systems biology. Nat. Methods, 12, 85-91.

Karr,].R. et al. (2012) A whole-cell computational model predicts phenotype
from genotype. Cell, 150, 389-401.

Keating,S.M. et al.; SBML Level 3 Community Members. (2020) SBML level
3: an extensible format for the exchange and reuse of biological models.
Mol. Syst. Biol., 16,e9110.

King,Z.A. et al. (2016) BiGG models: a platform for integrating, standardizing
and sharing genome-scale models. Nucleic Acids Res., 44,D515-D522.

Macklin,D.N. et al. (2020) Simultaneous cross-evaluation of heterogeneous E.
coli datasets via mechanistic simulation. Science, 369, eaav3751.

Melke,P. et al. (2010) A cell-based model for quorum sensing in heterogeneous
bacterial colonies. PLoS Comput. Biol., 6,e1000819.

Milner,R. (2009) The Space and Motion of Communicating Agents.
Cambridge University Press, Cambridge, UK.

Naylor,]. et al. (2017) Simbiotics: a multiscale integrative platform for 3d
modeling of bacterial populations. ACS Synthetic Biol., 6, 1194-1210.

Orth,].D. et al. (2010) What is flux balance analysis? Nat. Biotechnol., 28,
245-248.

€202 ABIN 2| uo Josn Ayis1aAluN plojuels AQ 6012259/2.61/L/8€/2I0IME/SOIBWLIOJUIOIG /WO dNO"D1WSPED.//:SA)Y WO PapeojuMod

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac049#supplementary-data
http://www.pymunk.org/
http://www.pymunk.org/

Vivarium: an interface and engine for integrative multiscale modeling 1979

Pearson,W.R. and Lipman,D.]. (1988) Improved tools for biological sequence
comparison. Proc. Natl. Acad. Sci. USA, 85, 2444-2448.

Phair,R.D. (2014) Mechanistic modeling confronts the complexity of molecu-
lar cell biology. Mol. Biol. Cell, 25, 3494-3496.

Poole,W. et al. (2020) BioCRNpyler: compiling chemical reaction networks
from biomolecular parts in diverse contexts. BioRxiv.

Raveh,B. et al. (2021) Bayesian metamodeling of complex biological systems
across varying representations. Proceedings of the National Academy of
Sciences, 118(35).

Rudge,T.]J. et al. (2012) Computational modeling of synthetic microbial bio-
films. ACS Synthetic Biol., 1,345-352.

Santillan,M. and Mackey,M.C. (2008) Quantitative approaches to the study of
bistability in the lac operon of Escherichia coli. J. R. Soc. Interface, 5, $29-S39.

Santillan,M. et al. (2007) Origin of bistability in the lac operon. Biophys. .,
92,3830-3842.

Skalnik,C.]J. et al. (2021) Whole-colony modeling of Escherichia coli. BioRxiv.

Somogyi,E.T. et al. (2015) libroadrunner: a high performance sbml simulation
and analysis library. Bioinformatics, 31, 3315-3321.

Stiles,].R. et al. (2001) Monte Carlo methods for simulating realistic synaptic micro-
physiology using MCell. In: De Schutter, E. (Ed.) Computational neuroscience:
realistic modeling for experimentalists. CRC press..

Swaminathan,A. et al. (2017) Fast and Flexible Simulation and Parameter
Estimation for Synthetic Biology Using Bioscrape. BioRxiv.

Swat,M.H. et al. (2012) Multi-scale modeling of tissues using CompuCell3D.
Methods Cell Biol., 110, 325-366.

Thiele,l. et al. (2020) Personalized whole-body models integrate metabolism,
physiology, and the gut microbiome. Mol. Syst. Biol., 16, ¢8982.

Varma,A. and Palsson,B.O. (1994) Stoichiometric flux balance models quanti-
tatively predict growth and metabolic by-product secretion in wild-type
Escherichia coli W3110. Appl. Environ. Microbiol., 60, 3724-3731.

Ward,A.B. et al. (2013) Integrative structural biology. Science, 339, 913-915.

Wong,P. et al. (1997) Mathematical model of the lac operon: inducer exclu-
sion, catabolite repression, and diauxic growth on glucose and lactose.
Biotechnol. Progress, 13, 132-143.

Yang,].H. et al. (2019) A white-box machine learning approach for revealing
antibiotic mechanisms of action. Cell, 177, 1649-1661.

Yu,lL et al. (2016) Biomolecular interactions modulate macromolecular struc-
ture and dynamics in atomistic model of a bacterial cytoplasm. Elife, 5,
el19274.

Yuan,B. et al. (2021) Cellbox: interpretable machine learning for perturbation
biology with application to the design of cancer combination therapy. Cell
Syst., 12, 128-140.

€202 ABIN 2| uo Josn Ayis1aAluN plojuels AQ 6012259/2.61/L/8€/2I0IME/SOIBWLIOJUIOIG /WO dNO"D1WSPED.//:SA)Y WO PapeojuMod

