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Whole-cell modeling of E. coli confirms that in vitro
tRNA aminoacylation measurements are insufficient
to support cell growth and predicts a positive
feedback mechanism regulating arginine biosynthesis
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ABSTRACT

In Escherichia coli, inconsistencies between in vitro
tRNA aminoacylation measurements and in vivo
protein synthesis demands were postulated almost
40 years ago, but have proven difficult to confirm.
Whole-cell modeling can test whether a cell behaves
in a physiologically correct manner when parame-
terized with in vitro measurements by providing a
holistic representation of cellular processes in vivo.
Here, a mechanistic model of tRNA aminoacylation,
codon-based polypeptide elongation, and N-terminal
methionine cleavage was incorporated into a devel-
oping whole-cell model of E. coli. Subsequent analy-
sis confirmed the insufficiency of aminoacyl-tRNA
synthetase kinetic measurements for cellular pro-
teome maintenance, and estimated aminoacyl-tRNA
synthetase k.,:s that were on average 7.6-fold higher.
Simulating cell growth with perturbed k¢,;:s demon-
strated the global impact of these in vitro measure-
ments on cellular phenotypes. For example, an insuf-
ficient k., for HisRS caused protein synthesis to be
less robust to the natural variability in aminoacyl-
tRNA synthetase expression in single cells. More
surprisingly, insufficient ArgRS activity led to catas-
trophic impacts on arginine biosynthesis due to
underexpressed N-acetylglutamate synthase, where
translation depends on repeated CGG codons. Over-
all, the expanded E. coli model deepens understand-
ing of how translation operates in an in vivo context.
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INTRODUCTION

Since  the introduction of the first tissue
culture—established in principle by Wilhelm Roux in
1885 and later demonstrated by Ross Harrison in 1907
(1)—in vitro studies have enabled detailed investigations
performed in controlled environments, leading to countless
important discoveries and insights. That said, extrapolating
such findings to living cellular contexts is challenged by the
degree to which the in vitro environment reflects its in vivo
counterpart. As such, consideration of the in vivo context
is essential for determining the impact in vitro findings may
have on the coordinated system of biological processes
occurring inside living cells (2). Essential as it may be,
the in vivo context is often not experimentally accessible.
What is therefore needed are methods that enable us to
accurately estimate in vivo properties—or evaluate in vitro
measurements—in the background of a holistic cellular
context.

In Escherichia coli, one important example of in vitro
measurements being inconsistent with in vivo demands
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concerns tRNA aminoacylation and protein synthesis,
as first identified by Jakubowski and Goldman almost
forty years ago (3). Seeking to determine the turnover
of aminoacyl-tRNAs in vivo, Jakubowski and Goldman
pulse-labeled E. coli cultures with radioactive amino acids.
By dividing their measurements of amino acid incorpo-
ration rates into protein (molecules per cell per second)
by the amounts of aminoacyl-tRNA synthetase (molecules
per cell), they were able to estimate the lower limits of
aminoacyl-tRNA synthetase activities (s''). Comparing
these minimal in vivo activities with in vitro measurements of
purified preparations of aminoacyl-tRNA synthetases led
to a surprising inconsistency: with one exception (GIuRS),
in vitro reports were 3- to 240-fold lower than their most
conservative estimates of in vivo activities. This study raised
several critical questions that remain unanswered, such as:
Why do these in vitro measurements underestimate cellu-
lar demands so dramatically? If the measured activities are
truly too low to support the cell’s needs, how much higher
must they be? And finally, could our reliance on the in vitro
measurements cause us also to miss or misinterpret impor-
tant cellular phenotypes?

Addressing these questions requires the use of compu-
tational approaches that can incorporate in vitro measure-
ments into a simulation of the in vivo context. In particular,
whole-cell modeling is an approach that takes into account
all the genes and known functions of an organism to pre-
dict phenotypes—consolidating millions of data points into
a dynamic representation of the intracellular system dur-
ing the cell cycle. A major advantage of whole-cell mod-
eling is that multiple biological processes—such as chro-
mosome replication, transcription, transcriptional regula-
tion, translation, metabolism, RNA and protein degrada-
tion, complexation, and cell division—are simulated simul-
taneously as the in vivo environment evolves over time. Ac-
cordingly, whole-cell models provide the in vivo context that
tests whether the cell can behave in a physiologically cor-
rect manner when parameterized with measurements and
reveals the propagating impact of these measured parame-
ters throughout the intracellular system, thereby offering a
rich environment for discovery.

Aminoacylation of tRNAs has posed an intriguing mod-
eling challenge in previous large-scale models developed by
our group, including Mycoplasma genitalium in 2012 (4) and
E. coliin 2020 (5). Pools of tRNAs are known to turnover
rapidly, with pulse-labeling measurements reporting that in-
dividual tRNA molecules undergo 1.8 to 8.1 aminoacyla-
tion cycles per second depending on the amino acid family
(3). Within the whole-cell modeling framework, which as-
sumes that time steps are short enough to consider biolog-
ical submodels independently, these fast turnovers meant
that the separation of tRNA aminoacylation from transla-
tion would cause tRNA pools to deplete during the simu-
lated time step, which is typically set to 1-2 s. Several solu-
tions were considered to overcome this obstacle: (i) shorter
time steps, which would increase the runtime, (ii) overex-
pression of tRNAs, which helped to enable the M. geni-
talium model (4), and (iii) assuming a sufficient supply of
aminoacyl-tRNAs and approximating their role by direct
polymerization of amino acids, as implemented in the first
version of the E. coli model (5). However, none of these
approaches are able to address the central questions posed

by Jakubowski and Goldman because they do not include
the mechanistic representation or kinetic information that
would be required.

Other groups have focused specifically on tRNAs in
their models of translation. For example, EIf and col-
leagues modeled how aminoacylation levels of different
tRNA isoacceptors respond when their cognate amino
acids become growth-limiting, as informed by tRNA con-
centrations, codon usage frequencies, and codon specifici-
ties of different isoacceptors (6). Their work presented
the theory of selective aminoacylation during amino acid
limitation—meaning that different isoacceptors of the same
amino acid will reach different steady state aminoacyla-
tion levels in response to limitation of their cognate amino
acid—and predicted codon sensitivities to amino acid star-
vation. Levin and Tuller modeled the major components of
translation—such as ribosomes, mMRNAs and tRNAs—and
competition for ribosomes and tRNAs at the codon resolu-
tion using a novel Multiple Pool State Machine Translation
Model (MP-SMTM) approach (as opposed to a kinetics-
based approach) to drive simulation dynamics (7). Their
work showed that the MP-SMTM approach could predict
the outcome of heterologous gene expression. Although
other aspects of the cell related to translation were repre-
sented by Levin and Tuller, such as ribosome activity and
mRNA pools reflecting the transcriptome, a complete rep-
resentation of cellular behavior was not a focus of either of
these studies.

Taking inspiration both from these studies and our pre-
vious work, we expanded our large-scale model of E. coli
to describe tRNA aminoacylation rates kinetically. This
enabled us to test whether the measured and Jakubowski
and Goldman-predicted rate constants related to aminoa-
cylation are sufficient for the cell’s normal function, and if
not, to estimate what the required parameter values would
need to be. We found that in fact, the measured aminoacyl-
tRNA synthetase activities are insufficient to maintain the
demands of the cellular proteome and that the required val-
ues are on average 7.6-fold higher. We also found that the
higher, predicted in vivo activities enabled the cell to over-
come the ribosome elongation rate’s sensitivity to the nat-
ural variability in aminoacyl-tRNA synthetase expression
in single cells. Finally, we show that the in vitro measure-
ments can lead to catastrophic impacts on cellular phe-
notype via a predicted regulatory feedback link between
aminoacyl-tRNAs and ribosomal pausing at tandem cog-
nate codons—in this case, arginine. In total, our findings
suggest that computational modeling can represent a bridge
between in vitro measurements and in vivo understandings.

MATERIALS AND METHODS

Materials and methods can be categorized into three pri-
mary areas: model construction, parameter estimation and
details of the specific simulations and follow-on analysis.
These are detailed in the Supporting Materials, but are also
described briefly below.

Hybrid deterministic-stochastic model

To be compatible with both the deterministic and stochas-
tic qualities of the tRNA aminoacylation cycle and the
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whole-cell modeling framework (described in Supporting
Materials, Section 1), a three-step strategy was developed:
(1) calculate the kinetic limitations of aminoacyl-tRNA syn-
thetases by simulating the tRNA aminoacylation cycle as a
deterministic ODE model described by Michaelis-Menten
enzyme kinetics, (ii) process ribosomes along their mRNAs
according to these kinetic limitations and the sequential or-
der in which ribosomes encounter codons on mRNAs and
(iii) stochastically reconcile any disagreements between the
kinetic- and sequence-determined constraints. Derivation
of the ODEs used, molecules represented, and codon-to-
anticodon interactions modeled can be found in Supporting
Materials, Section 1.

Optimization of aminoacyl-tRNA kinetic
parameters

synthetase

Parameter estimation of the aminoacyl-tRNA synthetase
kinetic parameters was described as objective minimization
problems, where each aminoacyl-tRNA synthetase was de-
scribed as an independent optimization problem that aims
to minimize the differences between the rates of tRNA
aminoacylation and aminoacyl-tRNA utilization. The rates
of tRNA aminoacylation were described by Michaelis—
Menten enzyme kinetics as in the hybrid deterministic-
stochastic model. The rates of aminoacyl-tRNA utilization,
or relatedly the codon reading rates, were derived from the
principle that the protein content of the cell must grow ex-
ponentially and double at the measured doubling time. De-
sign of the objective function, derivation of the codon read-
ing rates, values of constant parameters, and generation of
candidate solutions can be found in Supporting Materials,
Section 2.

Simulation and analysis

The model presented in this study was implemented into
the polypeptide elongation sub-model of the first version
of the E. coli model (5). A comparison of the prior and up-
dated models and a summary-level flowchart of the compu-
tational steps that take place within each time step is shown
in Figure 1. The primary changes to the polypeptide elon-
gation sub-model occur in the estimation of ribosome steps,
determination of kinetic and codon sequence order feasibil-
ity, reconciliation of kinetic and sequence solutions, and up-
date of molecular abundances. These changes are described
in Supporting Materials, Section 3. Additionally, the total
set of simulations and analyses performed are detailed in
Supporting Materials, Section 4.

RESULTS

A mechanistic model of tRNA aminoacylation, codon-based
polypeptide elongation, and N-terminal methionine cleavage
is incorporated into the developing whole-cell model of E. coli

To better account for the tRNA-related translation mech-
anisms noted above, we expanded the translation model
contained within the most recently published version of
the E. coli Whole-Cell Modeling Project (5,8) in three pri-
mary areas: tRNA aminoacylation, codon-based polypep-
tide elongation, and N-terminal cleavage of initial methion-
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ines. A schematic of the prior model (5) is shown in Fig-
ure 1A, and the new, expanded model is shown in Figure 1B.

First, we incorporated the aminoacylation of tRNAs
by aminoacyl-tRNA synthetases. As mentioned above, the
prior model assumed that the supply of aminoacyl-tRNA
synthetases and aminoacyl-tRNAs were sufficiently abun-
dant and did not limit the elongation rate of ribosomes. In
the current study, aminoacylation was represented accord-
ing to Michaelis—Menten enzyme kinetics, which enabled
the aminoacylation rates to respond to changes in abun-
dances of aminoacyl-tRNA synthetase enzymes and their
substrates (Supporting Materials, Section 1.1). This addi-
tion introduced the description of aminoacyl-tRNAs to our
simulated cells.

Second, to facilitate amino acid transfer by elongating ri-
bosomes, the amino acid-based polypeptide elongation de-
sign of the prior model was detailed to the codon level as
part of a hybrid deterministic-stochastic model (Support-
ing Materials, Sections 1.2 and 1.3). Codon-to-anticodon
interactions were designed to obey Watson-Crick base pair-
ing rules (such as the serine-cognate ser V tRNA with anti-
codon 3’-UCG-5’ decoding codon 5’-AGC-3 in Figure 1B)
and the Wobble Hypothesis (such as the lysine-cognate lys Y
tRNA with anticodon 3’-UUU-5" decoding codon 5’-AAG-
3’, also in Figure 1B)—with the exception of three codons
for which experimental measurements indicated more spe-
cific interactions. These exceptions are: arginine codons 5’-
CGA-3’ and 5’-CGC-3’, which were reported to be decoded
by tRNA isoacceptors argQ, argV, argY and argZ with an-
ticodon 3’-GCI-5’, where 1 is inosine—an adenosine deriva-
tive (9,10), and isoleucine codon 5’-AUA-3’, which was re-
ported to be decoded by tRNA isoacceptors ileX and ile Y
with anticodon 3’-UAL-5’, where L is lysidine—a cytidine
derivative (11,12).

Third, we incorporated the N-terminal cleavage of initial
methionines by Methionine Aminopeptidase (MAP) (Sup-
porting Materials, Section 1.4). Due to its use of the primary
amino acid sequence of polypeptides, the prior model syn-
thesized proteins in their mature form. In contrast, by incor-
porating codon-based polypeptide elongation in this study,
we synthesized immature forms of polypeptides including
the initial methionine residue of all nascent polypeptides.
In turn, this development facilitated the description of N-
terminal cleavage of initial methionines by MAP for its an-
notated substrates (13).

These expansions were implemented in the polypeptide
elongation sub-model of the E. coli model (Figure 1C
and Supporting Materials, Section 3). When estimating the
number of steps ribosomes were anticipated to take dur-
ing a time step, the prior model’s retrieval of the amino
acid sequence of the mature polypeptide (1,4, ;) was replaced
with the current model’s retrieval of the codon sequence of
the mRNA transcript (n¢, ;). Consequently, the determina-
tion of the number of feasible ribosome steps was changed
from a comparison of n, ; with the number of available
amino acids in the cell to a calculation of the kinetically-
feasible number of codon reading events, as determined by
solving a system of ODEs describing the tRNA aminoa-
cylation cycle. Afterwards, ribosomes process along mR-
NAs according to the sequence order of codons while obey-
ing the feasible number of elongation steps that can occur.
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Figure 1. A mechanistic model of tRNA aminoacylation, codon-based polypeptide elongation, and N-terminal methionine cleavage is incorporated into
the developing whole-cell model of E. coli. (A) Prior model of E. coli approximated the role of aminoacyl-tRNAs by direct polymerization of amino acids
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Any disagreements between the kinetically-determined and
sequence-determined number of ribosome steps are recon-
ciled stochastically (Supplementary Figure S1 and Support-
ing Materials, Section 3.3).

In summary, these improvements introduced the func-
tional representations of 22 synthetase subunits, all 85 tR-
NAs of the 20 canonical amino acids, the 61 sense codons,
and MAP (Table 1).

Deep curation confirms and quantifies the insufficiency of
aminoacyl-tRNA synthetase kinetic measurements for main-
tenance of the cellular proteome

As mentioned above, Jakubowski and Goldman proposed
that measured tRNA aminoacylation rates are not high
enough to adequately support cell growth (3). However,
this proposal was never fully explored. Thus, we curated
131 keye measurements from 81 studies representing all 20
aminoacyl-tRNA synthetases (Supplementary Table S1) to
inform the simulated rates of tRNA aminoacylation in our
model. To make a conservative first estimate, we selected
the largest measured k.ys from our data compilation and
described the aminoacyl-tRNA synthetase enzymes as fully
saturated so that the maximum enzyme flux could be cal-
culated as vmax = kcat[E], Where [E] is the concentration of
aminoacyl-tRNA synthetases and is retrieved from the cel-
lular content of the simulated cell at each time step. We
then ran 50 randomly-seeded simulations in the updated
model introduced by the current study, each two genera-
tions long (100 simulations in total), representing aerobic
growth in M9 Minimal Media supplemented with 0.4% glu-
cose at 37°C. This condition has previously been measured
to have a 44-min doubling time (14,15). We found that, in
contrast to the prior model (with unlimited tRNA aminoa-
cylation), which showed an average doubling time of 48.8
min and agreed well with the 44-min measurement (two-
tailed P-value = 0.26 calculated from the z-score for the
44-minute measurement = 1.12), the simulations that incor-
porated the measured k,s resulted in a 3.1-fold increase in
average doubling time to 150 minutes (two-tailed P-value =
1.2 x 107, z-score = 4.86) (Figure 2A). Moreover, 9% of
the cell simulations reached the 3-h upper limit of simula-
tion time, at which point our model automatically halts sim-
ulations as a control on computational resources. Thus, in
agreement with Jakubowski and Goldman’s assertion, the
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whole-cell model simulations confirmed that measured k¢aS
were incompatible with measured doubling times.

We hypothesized that the increased doubling times were
associated with decreased protein biomass. Accordingly, we
examined the accumulation of protein versus non-protein
mass over the cell cycle in a representative simulation (Fig-
ure 2B). Although the cell nearly doubled its mass (2.2-fold
increase in total dry mass) during its 150.1-min cell cycle,
the cellular components did not double in a balanced man-
ner: protein mass lagged behind at a 1.6-fold increase while
non-protein mass (DNA, RNA, and small molecules) ad-
vanced ahead at a 2.7-fold increase. Expanding our exam-
ination to the full set of simulations revealed a consistent
under-production of protein (1.6-fold average increase in
protein mass, two-tailed P-value = 6.6 x 107> calculated
from the z-score for the 2-fold expectation for cell doubling
= -3.99) and over-production of non-protein components
(2.3-fold average increase in non-protein mass, two-tailed P-
value = 0.16, z-score = 1.41), resulting in roughly doubled
total dry cell mass (2.0-fold average increase in dry mass,
two-tailed P-value = 0.99, z-score = 0.01) (Figure 2C). This
confirmed that the tRNA aminoacylation rates were insuffi-
cient for the maintenance of the cellular proteome but suffi-
cient for non-protein components, at least in the short term.

To further investigate the source of the observed growth
insufficiency, we considered the mathematical representa-
tion of the tRNA aminoacylation reaction (Figure 2D).
For this specific analysis, we assumed that tRNAs were
aminoacylated at their maximal reaction rates in our proto-
type, meaning that only two parameters—the rate of cataly-
sis k¢, and the aminoacyl-tRNA synthetase concentration
[E]—could be directly responsible for the low protein mass
accumulation we observed. We considered each of these pa-
rameters in turn. With regard to the [E] term, we compared
the simulated proteome against a proteomic dataset (16)
that was not used in the construction of the model (Fig-
ure 2E). With the exception of proteins with low copies
per cell (for which small differences appear amplified on
a log-log plot), we observed good agreement between the
overall simulated proteome and the measurement (coeffi-
cient of determination, R> = 0.63 for proteins existing at
30 or more copies per cell). In particular, the 17 aminoacyl-
tRNA synthetase subunits that were measured appeared
within one order of magnitude above and below the diag-
onal, indicating satisfactory agreement with the proteomic

(circles) by ribosomes (light blue) according to the primary sequence of polypeptides (rectangles). With each elongation step, an amino acid (for example,
threonine in pink) is directly incorporated (dashed circle) into the nascent polypeptide. Amino acids are labeled with their single-letter abbreviations. (B)
Updated model (presented in the current study) expanded the translation model by representing the mechanisms of tRNA aminoacylation, codon-based
polypeptide elongation, and N-terminal cleavage of initial methionines (Supporting Materials, Section 1). With each elongation step, an aminoacyl-tRNA
(for example, a threonyl-#/rT or threonyl-z4r V'tRNA in pink) interacts with the codon in the open A site (ACC) by Watson-Crick (such as the serine-cognate
ser VtRNA with anticodon 3’-UCG-5’ decoding codon 5’-AGC-3’) or Wobble base pairing (such as the lysine-cognate /ys Y tRNA with anticodon 3’-UUU-
5” decoding codon 5’-AAG-3) to facilitate incorporation (dashed rectangle connected to a dashed circle) of the next residue (threonine). After interaction
with the ribosome (light blue), tRNAs (curved-edge rectangles) are available for successive rounds of aminoacylation by aminoacyl-tRNA synthetase
enzymes (labeled ‘E’). Nascent polypeptides that undergo N-terminal cleavage of the initial methionine by Methionine Aminopeptidase (labeled ‘"MAP”)
are cleaved before termination. Colors and sequences are coordinated between panels A and B to aid comparison. (C) Comparison of implementations of
translation in the prior model (with unlimited tRNA aminoacylation) and updated model (presented in the current study) (Supporting Materials, Section 3).
Notes: a: Interpolated from Bremer and Dennis, 2008 (19). b: Uses the primary sequence of mature proteins. c: Ribosomes process sequentially along the
amino acid (prior model) or codon (updated model) sequence, such that the most limiting amino acid or codon determines the number of ribosome steps.
In the prior model, no further steps are required. However, in the updated model, due to the cyclic relationship between tRNA aminoacylation and codon
reading, any excess estimation of codon reading events k; are incorporated back into the calculation of tRNA aminoacylation events (from the mass action
kinetics model) through the Reconciliation Program. d: The Reconciliation Program is detailed in Supplementary Figure S1 and Supporting Materials,
Section 3.3.
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Table 1. Functional representations introduced by the updated model.
The functional representations of 22 synthetase subunits (forming 20
aminoacyl-tRNA synthetase species), 85 tRNAs (in their aminoacylated
and unaminoacylated forms) for the 20 canonical amino acids, the 61 sense
codons, and Methionine Aminopeptidase have been incorporated into the
E. coli model (5) by this study

Functional representations introduced

Number of Number of
Translation components representations genes
Aminoacyl-tRNA synthetase 20 species 22
tRNA 85 species 85
Codons 61 sense codons N/A
Methionine aminopeptidase 1 species 1

measurements. Having verified the average abundance of
the aminoacyl-tRNA synthetases with experimental mea-
surements, we next sought to verify their distributions
against a single-cell protein profiling dataset with single-
molecule sensitivity (17), which was also not used in the
construction of the model. To be directly comparable with
our faster growing cells (44 minutes doubling time, versus
150 minutes in the dataset (17)), we scaled up the reported
gamma distribution by aligning the measured means to our
simulated means while preserving the shape of the measured
distributions (representatives in Figure 2F, full set in Sup-
plementary Figure S2). For all 13 aminoacyl-tRNA syn-
thetases in the measured dataset, their simulated distribu-
tions agreed well with corresponding measured distribu-
tions. Notably, none of the aminoacyl-tRNA synthetases
showed a broader distribution than their measured coun-
terpart, indicating that the simulated number of aminoacyl-
tRNA synthetases molecules were not ‘too low’ (which
would be the direction of incompatibility that would lead to
insufficient tRNA aminoacylation). Considering that sep-
arate experimental measurements supported both the av-
erages and distributions of aminoacyl-tRNA synthetases,
we concluded that the measured k., s must be the primary
cause of insufficient tRNA aminoacylation rates that were
unable to support maintenance of the cellular proteome, in
agreement with Jakubowski and Goldman (3).

Optimization of aminoacyl-tRNA synthetase kinetic parame-
ters yields quantitative estimates of k.,s that adequately sup-
port cell growth

Having determined that the measured aminoacyl-tRNA
synthetase k.ys are primarily responsible for insufficient
protein production, we sought to calculate k., values that
would support the cell’s demand for protein synthesis. We
developed a parameter optimization strategy that treated
the kinetics of each aminoacyl-tRNA synthetase as an
independent optimization problem that aimed to mini-
mize differences between the rates of tRNA aminoacyla-
tion and aminoacyl-tRNA utilization—at both the aver-
age and minimum intracellular abundances of aminoacyl-
tRNA synthetases—while holding to the principle that the
protein content of the cell must grow exponentially and
double at roughly the measured doubling time (Figure 3A).
The average and minimum concentrations of aminoacyl-
tRNA synthetases were estimated from sample simulations

produced from our prior model (with unlimited tRNA
aminoacylation) (5). During optimization, the estimated
average aminoacyl-tRNA synthetase concentrations were
held fixed, while the minimum concentrations—due to their
variable nature between cells—were allowed to range be-
tween the estimated minimum and 0 wM (which is the
lowest feasible value) in a 4-value parameter sweep (Sup-
plementary Figure S3) (described more fully in Support-
ing Materials, Section 2). For each aminoacyl-tRNA syn-
thetase, this process produced a range of k., solutions, of
which the candidate k¢, corresponding to the minimum ob-
jective value was identified as the best solution (reported in
Supplementary Table S2 and compared to the average mea-
sured ke in Supplementary Table S3) and used for the re-
mainder of this study.

Next, we wanted to assess the impact of the optimized
keats in the virtual in vivo context of our simulations. We
therefore replaced the measured kys with their optimized
counterparts, relaxed our assumptions about saturation in
amino acids and tRNAs shown in Figure 2D (the saturation
assumption for ATP was left intact), and performed 150
simulations of 10-generation long lineages (initialized at 15
random seeds) representing aerobic growth in M9 Minimal
Media supplemented with 0.4% glucose at 37°C. In contrast
to our previous simulations, the average doubling time was
found to be to 44.4 min (two-tailed P-value=0.90, z-score
=0.12) and the population distribution (standard deviation
of 3.6 min) returned to levels observed from the prior model
(standard deviation of 4.3 min) (Figure 3B).

We also sought to compare the resulting simulation
output to our prior model—in particular, as related to
translation. Considering our set of 150 simulations fur-
ther, we compared outputs with the prior model outputs
at the tRNA, amino acid and protein levels (Figure 3C).
Our comparison identified several improvements in simu-
lation output. First, the prior model was unable to rep-
resent tRNA aminoacylation rates, aminoacylated frac-
tion, rates of interactions between aminoacyl-tRNAs and
codons (e.g. alanyl-alaT tRNA interacts with two codons:
GCA and GCQG), and N-terminal methionine cleavage rates
of nascent polypeptides. Second, representing the tRNA
aminoacylation reactions explicitly enabled the allocation
of tRNAs into aminoacylated and unaminoacylated forms,
in contrast to the prior model, which only represented the
unaminoacylated form. Finally, the inclusion of codon-
based polypeptide elongation facilitated the observation of
the codon reading rate (in contrast to the amino acid read-
ing rate, as represented in the prior model).

Our new simulation outputs were also consistent with the
experimental validation benchmarks—the molecular count
of each protein (Figure 3D) and the fluxes through reac-
tions in central carbon metabolism (Figure 3E)—that we
used in our prior model. We also found that the simulated
tRNA abundances, both the isoacceptor-specific concen-
trations (Figure 3F) and the total number of all tRNAs
(Figure 3G), recapitulated their estimates taken from Dong
and colleagues (18) and Bremer and Dennis (19), which
were respectively used as model inputs. The model improve-
ments also enabled us to compare across tRNA species with
greater detail regarding their forms (aminoacylated or not),
isoacceptor group, and the full range of their intracellular
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Figure 2. Deep curation confirms and quantifies the insufficiency of aminoacyl-tRNA synthetase kinetic measurements for maintenance of the cellular
proteome. (A) Distribution of doubling times of cells simulated in the prior model (n = 100 cells, gray) and in the updated model when using the mea-
sured aminoacyl-tRNA synthetase kcy8 (n=100 cells, blue)—compared to the experimentally measured doubling time (black). (B) Mass accumulation of
total dry cell (gray), protein (blue), and non-protein (yellow) in a representative cell simulated in the updated model with the measured aminoacyl-tRNA
synthetase kcqis. The representative cell (Variant 2, Seed 11, Generation 0) was chosen for exhibiting a doubling time that is closest to the population
average. Black dashed line represents the expectation of mass doubling during exponential growth. (C) Distribution of mass fold changes of total dry
cell (gray), protein (blue), and non-protein (yellow) in cells simulated in the updated model with the measured aminoacyl-tRNA synthetase k¢, (n =
100 cells). Error bars indicate the range of observed values. Black dashed line represents the expectation of mass doubling during exponential growth.
(D) Rate of tRNA aminoacylation described by Michaelis-Menten enzyme kinetics representing random-ordered substrate-binding and competition be-
tween tRNA isoacceptors for the aminoacyl-tRNA synthetase. Maximal rates were assumed by setting the fractional components to 1. Notations are:
[E] = aminoacyl-tRNA synthetase concentration, [4] = amino acid concentration, [7;] = ith tRNA isoacceptor (unaminoacylated form), [ATP] = ATP
concentration, k¢, = rate of catalysis, Ky 4 = Michaelis—Menten constant describing the affinity between amino acids and aminoacyl-tRNA synthetase,
Kwm 1i = Michaelis-Menten constant describing the affinity between unaminoacylated tRNAs and aminoacyl-tRNA synthetase, n = number of tRNA
isoacceptors. (E) Correlation of proteome abundance between the measurement (16) and simulation using the prior model (n = 100 cells). Each protein is
represented by a gray dot. Aminoacyl-tRNA synthetases are highlighted with blue circles. Solid black diagonal represents the y = x line, and the dashed
black lines indicate one order of magnitude above and below the diagonal. (F) Comparison of distribution of protein abundance for three representative
aminoacyl-tRNA synthetases—CysRS (left), AlaRS (middle), and ThrRS (right)}—shown as probability densities. Simulated abundances are from the
prior model (n = 100 cells, blue) and the measured distributions were scaled from (17) (yellow). Full set of comparisons is shown in Supplementary Figure
S2. All cells were simulated in aerobic growth in M9 Minimal Media supplemented with 0.4% glucose at 37°C. Simulations of the prior model represent
10-generation long lineages initialized at 10 random seeds (total of n = 100 cells). Simulations in the updated model using the measured aminoacyl-tRNA
synthetase k¢a(s represent 2-generation long lineages initialized at 50 random seeds (total of # = 100 cells). Descriptions of the analyses performed in this
figure can be found in Supporting Materials, Section 4.

abundance (Supplementary Figure S4A). This enabled us
to compare simulations to a further class of datasets that
was not used to parameterize the model: aminoacylated per-
centage (Supplementary Figure S4B). Four published stud-
ies were compared in total; these studies did not uniformly
agree with each other (possibly due to variation in strains
or experimental conditions), which precludes agreement be-
tween the model and the entirety of the data. That said, we
observed good agreement with two different studies includ-

ing Serensen, in which the charged fraction of argV, leuP,
leuQ, leuT, leuV, and thrV in particular matched well with
simulations, as did the range of values suggested for AisR
(20); and Kruger et al., in which glnU, ginW, gltT, gltU,
gltV, gltW are inside the simulated ranges, and lysine tR-
NAs’ aminoacylated percentage measurements overlapped
with the upper simulated end (21). A third study (22) exhib-
ited agreement with some of our predictions and not others,
but also differed from the other studies in two significant
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Figure 3. Optimization of aminoacyl-tRNA synthetase kinetic parameters yields quantitative estimates of k¢as that adequately support cell growth.
(A) Objective function used to perform optimization of aminoacyl-tRNA synthetase kinetic parameters. The three main components are: steady-state
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ways: (i) overall the aminoacylated percentages measured
tended to be lower than those measured in any other study,
often by a substantial amount; and (ii) in some cases the dis-
tributions for the aminoacylated percentages ranged higher
than 100%, which our model is unable to simulate. The last
study (23) was also mixed, with aminoacylated percentages
for all tRNAs in the alanine, arginine, glycine, histidine, pro-
line, threonine and tyrosine amino acid families predicted
well, for aspartate, isoleucine, and serine not predicted well,
and for the rest somewhere in between. In sum, we found
that our simulation predictions agreed with at least one of
these datasets in most cases, and that our calculated aver-
age aminoacylated percentage of 78.8% for tRNAs over-
all agrees well with all other studies except for the third
mentioned. As a result, we concluded that the optimized
aminoacyl-tRNA synthetase ks were able to produce sim-
ulation outputs that recapitulated typical cell growth.
Equipped with the kinetics-optimized tRNA aminoacy-
lation model that was compatible with the in vivo context
represented by our simulations, we were able to further
pursue the questions raised by the inconsistency between
in vitro measurements and in vivo estimates of aminoacyl-
tRNA synthetase activities (3). Jakubowski and Goldman
presented their k¢, estimates as lower limits, and so for their
hypothesis to be correct, our estimates would have to be
equal or higher—not only than their values, but also than
most or all of the experimental measurements. To test this
assertion, we compared our estimated ks to the curated
experimental data and Jakubowski and Goldman estimates
(Figure 3H). For the 10 aminoacyl-tRNA synthetase en-
zymes Jakubowski and Goldman estimated, our k., esti-
mates (median of 174 s”!, blue circles) were on average 9.4-
fold (median) higher than their estimates of the lower limit
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of in vivo activity (median of 13.6 s°!, gray circles). We also
noted that many of the in vitro measurements referred to
by Jakubowski and Goldman (black lines) fall in the lower
range of total curated measurements (gray bars)—and are
the absolute minimum measurements reported for IleRS,
LeuRS, ArgRS and GInRS—suggesting that the measure-
ments that have been reported since the 1980s may be higher
than older measurements. Taken together, these observa-
tions support Jakubowski and Goldman’s assertion that
their estimates were indeed lower limits of kgys.

We also compared our own estimates to the in vitro mea-
surements from our curation, and found that our kg, es-
timations were on average 7.6-fold higher (median) than
the highest measurements. Ranking the degree of agreement
between our k¢, estimations (Figure 3H) with either the
highest measurement from our curation or the lower limit
of in vivo activity estimated by Jakubowski and Goldman
revealed that 12 of the aminoacyl-tRNA synthetases fall
within one order of magnitude of these benchmarks, indi-
cating fair agreement for these enzymes; the remaining eight
aminoacyl-tRNA synthetases fell within two orders of mag-
nitude. We chose two representative synthetases (HisRS and
ArgRS, highlighted in green) to examine more closely as
part of this overall study; the details can be found below.

Higher, optimized k., values confer robustness in ribosome
elongation rate to variability in aminoacyl-tRNA synthetase
availability

Pairing two of our previous findings—first, that the opti-
mized ks we calculated were on average 7.6-fold higher
than the greatest measurements (Figure 3H), and sec-
ond, that the intracellular abundance of aminoacyl-tRNA

errors (first line), regularization of kinetic parameters (first summation on the second line), and bounds penalties for aminoacylation levels that are too
close to either extreme—O0 or 1 (second summation on the second line). Each aminoacyl-tRNA synthetase was treated as an independent optimization
problem. Notations are: va avgj; = rate of aminoacylation of ith tRNA isoacceptor at average aminoacyl-tRNA synthetase concentrations, vA min,ij =
rate of aminoacylation of ith tRNA isoacceptor at minimum aminoacyl-tRNA synthetase concentrations, vp; = rate of amino acid transfer and release
of ith tRNA isoacceptor, K1; = Michaelis—Menten constant describing the affinity between the unaminoacylated form of the ith tRNA isoacceptor
and the aminoacyl-tRNA synthetase, fivg; = fraction of ith tRNA isoacceptor in the unaminoacylated form at average aminoacyl-tRNA synthetase
concentrations, fyin; = fraction of ith tRNA isoacceptor in the unaminoacylated form at minimum aminoacyl-tRNA synthetase concentrations, n =
number of tRNA isoacceptors, ¢ = number of growth conditions, w; = weight of regularization term, wy, = weight of bounds penalty. Description of the
parameter optimization approach can be found in Supporting Materials, Section 2. (B) Distribution of doubling times of cells simulated in the prior model (n
=100 cells, gray) and in the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters (n = 150 cells, blue}—compared to the
experimentally measured doubling time (black). (C) Comparison of translation dynamics between the prior model (n = 100 cells) and updated model when
using the optimized aminoacyl-tRNA synthetase kinetic parameters (n=150 cells) during the cell cycle for alanine. Aminoacylation rate, aminoacylated
fraction, rate of tRNA-codon interaction, and N-terminal initial methionine cleavage are new representations introduced by the current study. The cellular
abundance of tRNAs have been divided into aminoacylated and unaminoacylated fractions in the updated model. The direct polymerization of alanine
in the previous model has been replaced with codon-based polypeptide elongation (the four codons of alanine: GCU, GCG, GCA and GCC). Solid lines
represent mean behavior and shaded regions indicate one standard deviation above and below the mean. (D) Correlation of average protein abundance
between the prior model and the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters. Each protein (n = 4307 total)
is represented by a gray dot. (E) Correlation of average flux through central carbon metabolism between the prior model and the updated model when
using the optimized aminoacyl-tRNA synthetase kinetic parameters. Each reaction (n = 23 total) is represented by a gray dot. (F) Correlation between
the simulated (in the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters) and measured (as reported by Dong
and colleagues (18)) average concentrations of tRNA isoacceptors. Each tRNA isoacceptor is represented by a gray dot; the mapping between tRNA
isoacceptors reported by Dong and colleagues and our simulations is reported in Supporting Materials, Section 4.2.2. (G) Distribution of the total number
of simulated tRNA molecules per cell in blue (in the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters) compared
to a report by Bremer and Dennis (19) in gray. (H) Comparison of the ranges of aminoacyl-tRNA synthetase activities observed from measurements (gray)
and from the parameter optimization (blue). The estimations of the lower limit of aminoacyl-tRNA synthetase activities by Jakubowski and Goldman (gray
triangles) and the particular measurements their study compared to (black lines) are also indicated (3). For each aminoacyl-tRNA synthetase optimization
problem, the best solution (blue circle) was used for the remainder of this study. HisRS and ArgRS (green boxes) are investigated further in this study.
Aminoacyl-tRNA synthetases are ranked by their degree of agreement between the optimized and measured activities. All cells were simulated in aerobic
growth in M9 Minimal Media supplemented with 0.4% glucose at 37°C. All simulations in this figure represent 10-generation long lineages initialized at
10 (prior model, total of n = 100 cells) or 15 (updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters, total of n=150
cells) random seeds. Descriptions of the analyses performed in this figure can be found in Supporting Materials, Section 4.
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synthetases can be quite variable (Figure 2F and Supple-
mentary Figure S2)—we hypothesized that the calculations
made by Jakubowski and Goldman may have been im-
pacted by their reliance on an average aminoacyl-tRNA
synthetase concentration rather than the entire range of en-
zyme concentrations experienced by the cell. In this con-
text, we note two orthogonal factors that can limit protein
production. First, the expression of synthetase enzymes is
known to be a noisy and stochastic process (17) and can lead
to variable enzyme counts that rise and fall, sometimes dra-
matically, over the course of a cell cycle. Second, the elonga-
tion rate of a ribosome on mRNA is thought to have a phys-
ical upper limit even when resources are abundant. Taken
together, these characteristics suggest that if the aminoacyl-
tRNA synthetase k¢y is not sufficiently high, and the cor-
responding enzyme counts are lower than the average, then
the cell could enter a period of lower protein production.
The impact of this lower protein production could be mit-
igated by a period of higher production at a different time
as long as the physical limit on ribosome procession is not
surpassed. Thus, we hypothesized that a higher k., confers
robustness to variability in aminoacyl-tRNA synthetase en-
Zyme expression.

To test this hypothesis, we focused on histidine and per-
formed simulations to determine whether the full range
of possible HisRS concentrations can adequately support
cell growth when the k¢ corresponds to measured val-
ues. HisRS was chosen for having an estimated k., that
showed relatively fair agreement with the highest measure-
ment (ranked fifth for agreement in Figure 3H), and for
being a relatively simple system, aminoacylating a single
tRNA isoacceptor that reads two codons. We therefore re-
duced the HisRS k¢, 2.7-fold from its optimized value
(386 s7!) to the highest measured value (142 s!) while all
other parameters were held constant, and performed 150
simulations (of 10-generation long lineages initialized at 15
random seeds). We found that overall, simulating with the
measured HisRS k¢, led to a slightly increased average dou-
bling time (mean = 50.9 min, standard deviation = 6.1 min)
compared to simulations using the optimized k., (mean =
44.4 minutes, standard deviation = 3.6 min) (Figure 4A).
Despite the broader distribution, we also observed the pres-
ence of a rare (I out of 150) slower-growing cell with a
doubling time that exceeded three standard deviations be-
yond the mean (where the empirical rule of statistics re-
gards three standard deviations to account for 99.7% of
the data in a normal distribution). It therefore seemed that
the relatively modest decrease in HisRS k., (compared to
other aminoacyl-tRNA synthetases) generally led to slowed
growth, but could also lead to rare instances of extremely
slowed growth.

To determine whether the rare slower-growing cell was
simply a statistical anomaly, or more importantly whether
the reduced k., was impacting our simulations, we exam-
ined the specific lineage that produced the top outlier—a
cell that took 71.1 minutes to complete its cell cycle (Fig-
ure 4B-E). In the context of its 10-generation long lin-
eage, the outlier cell occurred in Generation 9 and was pre-
ceded by mother cells with increasingly lengthening dou-
bling times (Figure 4B) relative to the population average
of 50.9 min (Figure 4A). We thus determined that the lin-

eage experienced disruptions to typical growth, particularly
during Generations 5, 7, 8 and 9 (which are all members of
the top 10 outliers identified in Figure 4A), that required
further examination.

Following our overall hypothesis as described above, we
speculated that the translation machinery and its resources
might be associated with the disruptions to typical growth.
To investigate the productivity of the translation machin-
ery, we examined the ribosome elongation rate (Figure 4C),
the aminoacylation rate of hisR tRNA (Figure 4D), and the
abundance of HisRS (Figure 4E), all in the same lineage.
While ribosome elongation began at a stable rate of 17.5
amino acids per second, it also deviated by more than 40%
during Generations 5 through 9 (highlighted in green), and
reached a minimum of 9.1 amino acids per second in Gener-
ation 8 (Figure 4C). During the same window of time (high-
lighted in green), hisR tRNA aminoacylation was nearly
halved from an average starting rate of 7.6 wM/s to a min-
imum of 4.2 wM/s at Generation 7 and reached a compa-
rably low value of 4.3 wM/s at Generation 8 (Figure 4D).
Similarly, HisRS concentration visited the lowest 23.5% of
its dynamic range (0.26-0.33 wM) during this time, with the
minimum occurring in Generation 8 at 478 min (Figure 4E).
The coordinated quality of these disruptions throughout
the translation machinery suggested a propagation of inad-
equate capacity to charge hisR tRNAs with histidines, and
that this insufficiency was originating from HisRS visiting
the lower extreme of its dynamic range.

We next examined the correlation between HisRS con-
centrations and ribosome elongation rates during each time
step of all simulated cells (Figure 4F). Whereas the opti-
mized HisRS k¢, simulations demonstrated stable rates of
ribosome elongation, independent of HisRS concentration,
the measured HisRS k., led to a dramatic drop in the ribo-
some elongation rate for HisRS concentrations below 0.59
wM, reaching the previously observed (Figure 4C) mini-
mum of 9.1 amino acids per second per ribosome. This re-
gion of tRNA aminoacylation limitation (taken to be when
the ribosome elongation rate was less than 17.3 amino acids
per second per ribosome, which is the minimum observed
in the optimized simulations) accounted for 91.1% of the
time steps. These trends suggested two predominant charac-
teristics of the relationship between aminoacyl-tRNA syn-
thetase concentrations and ribosome elongation rates: the
previously described physical upper limit on the procession
of ribosomes (as informed by the availability of cellular re-
sources in the particular growth condition) and a sensitiv-
ity threshold at low aminoacyl-tR NA synthetase concentra-
tions in the measured k¢, case at which the system switches
from maximum to lower elongation rates.

In considering how to ensure that the average ribosome
elongation rate is maintained across the entire dynamic
range of aminoacyl-tRNA synthetases, we identified two
potential approaches, both of which are illustrated schemat-
ically in Figure 4G. One approach would be to scale the en-
tire relationship curve between the ribosome elongation rate
and aminoacyl-tRNA synthetase concentration upwards,
including—and most importantly—the maximum elonga-
tion rate (Figure 4G, left panel). We recognized that this
approach would compromise the physical upper limit of ri-
bosome procession, which is thought to be well-established
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Figure 4. Higher, optimized k¢, values confer robustness in ribosome elongation rate to variability in aminoacyl-tRNA synthetase availability. (A) Dis-
tribution of doubling times (rounded to the nearest minute) of cells simulated in the updated model when using the optimized (n = 150 cells, gray) and
measured (n = 150 cells, blue) HisRS kcys. The mean () and 3 standard deviations away from the mean (p &+ 30) are indicated by the horizontal lines.
(B) Doubling times of each cell in the 10-generation lineage that includes the cell with the longest doubling time (Variant 3, Seed 12, Generation 9) in the
updated model when using the measured HisRS k¢, in panel A. Doubling times are shown relative to the average of all simulations with the measured
HisRS keat (n =150 cells). The top four longest doubling times in this lineage, which are also within the top 10 outliers identified in panel A, are highlighted
in green. (C) Ribosome elongation rate, (D) ~isR tRNA aminoacylation rate, and (E) HisRS concentration during the same 10-generation lineage as panel
B. Regions highlighted in green indicate times when the ribosome elongation rate deviated by more than 40% from the expected value for the simulated

€20z Jequisydag 0z uo Jasn [INNODDV ONITTIE] Arelqr meT Aysteaun piojuels Aq 068221 2/1 L6S/Z L/LG/2101He/Ieu/wod dno-olwapede//:sdjy woly papeojumod



5922 Nucleic Acids Research, 2023, Vol. 51, No. 12

(19), and that obeying the physical upper limit would make
it difficult for the average ribosome elongation rate to
‘catch up’ after experiencing a significant decrease. The sec-
ond approach would be to raise the k¢, (Figure 4G, right
panel)—which is the sole term in Figure 2D that can coun-
teract low aminoacyl-tRNA synthetase concentrations, [E].
We anticipated that this approach would decrease the sen-
sitivity threshold so that the entire dynamic range of the
aminoacyl-tRNA synthetase can be supported by the Ay
(Figure 4G, right panel).

To test this hypothesis, we performed a parametric
sweep on the HisRS k. between the experimentally
measured (142 s!) and our optimized (386 s!) values,
and performed 100 simulations (of 10-generation long
lineages initialized at 10 random seeds) at each new
sweep value (Figure 4H and I). As the k., increased,
the sensitivity threshold gradually decreased from 0.57
uM (measured key), to 0.45 pM (ke = 183 s71), to
0.35 uM (keat = 223 s7!) to nonexistent at the optimized
keat- Simultaneously, the minimum ribosome elongation
rate increased from 9.1 to 17.3 amino acids per second
per ribosome and the portion of time spent with tRNA
aminoacylation limitation decreased from 91.1% to 0%.
We thus concluded that the higher, optimized k., confers
robustness of ribosome elongation rate—and correspond-
ingly, to normal cellular physiology and growth—with
respect to variability in aminoacyl-tRNA synthetase
expression.

Insufficient ArgRS Kkinetic capacity leads to catastrophic im-
pacts on cellular phenotype via arginine biosynthesis due to
abrogated expression of ArgA

Having considered the measured k¢, in the case of HisRS,
we next performed a similar analysis with a more com-
plicated synthetase example, ArgRS, which aminoacylates
seven tRNA isoacceptors that collectively read six codons.
We reduced the ArgRS kc 8.1-fold from its optimized
value (210 s™!) to the highest measured value (26 s2!') while
all other parameters were held constant, and attempted
to perform 10 lineage simulations, each of which were 20-
generations long. We found that 7 of them encountered pre-
maturely terminated cell cycles before all generations were
simulated, resulting in fewer viable simulations as the gener-
ation number increased (Figure 5A, top). Even in the viable

simulations, the lower (measured) ArgRS k¢, led to a nearly
2-fold increase in doubling time in the first generation com-
pared to simulations performed using the optimized ArgRS
keat (Figure 5A, bottom). The doubling time continued to
increase in subsequent generations until our three hour dou-
bling time limit was reached. Thus, using the measured Ar-
gRS k., was more detrimental to cell growth than using the
measured HisRS kcy.

To investigate the cause of the increased doubling times,
which suggested a slowed accumulation of cellular mate-
rial, we examined the production of cell mass at the DNA,
RNA, and protein levels in a single lineage from our simu-
lation set (Figure 5B). Although we anticipated (and saw)
a slight reduction in protein production (compared to the
optimized ArgRS k¢, case) and an increase in RNA pro-
duction (consistent with Figure 2B and C) starting at Gen-
eration 0, we were surprised to see a complete absence of
protein accumulation starting at Generation 9, followed by
cessation of DNA (Generation 11) and RNA (Generation
12) accumulation as well. Once production had stopped,
the mass of these cellular components halved at each sub-
sequent cell division event, as would be expected. To de-
termine whether our observations in this single simulation
extended to the entire set of simulations, we calculated the
fold change in cell mass as a function of the cell cycle num-
ber (Figure 5C). While the optimized ArgRS k¢, simula-
tions exhibited a two-fold increase in all major cellular com-
ponents, the measured ArgRS k¢, simulations revealed a
consistent trend of lineages that were unable to accumu-
late protein mass starting at Generation 10, then DNA at
Generation 12, and then RNA at Generation 14 (green
bars).

Since the factor(s) limiting protein production at, for
most lineages, Generation 10 may have been related to an
insufficient supply of aminoacyl-tRNAs, it seemed that the
translation machinery required further attention. To assess
whether aminoacyl-tR NAs were limiting the production of
protein, we considered the distribution of aminoacylated
fractions of tRNAs grouped by amino acid family for all
lineages up to the generation when protein mass accumula-
tion halts (Figure SD). For almost all of the amino acid fam-
ilies, the average aminoacylated percent varied from 91.3%
(histidyl-tRNAs) to 97.8% (methionyl-tRNAs). In contrast,
arginine tRNAs showed a much lower average aminoacyla-
tion at 5.1%, strongly suggesting that low aminoacylation

growth condition (17.5 amino acids per second per ribosome). Vertical dashed lines indicate cell division events. (F) Comparison of the relationship between
the ribosome elongation rate and HisRS concentration from simulations in the updated model when using the optimized (n = 150 cells, gray) and with the
measured (n = 150 cells, blue) HisRS kcys. In the scatter plot, each time step is represented by a dot. The top histogram shows the distribution of HisRS
concentrations. The right histogram shows the distribution of ribosome elongation rates. (G) Schematic of the two approaches for recovering the average
ribosome elongation rate: scaling the relationship upwards (left) or raising the k¢, (right). The anticipated relationship between ribosome elongation rate
and aminoacyl-tRNA synthetase is depicted in blue. The physical upper limit of ribosome procession given the growth condition is depicted in yellow,
and the anticipated change in sensitivity threshold is indicated in green. (H) Comparison of the relationship between ribosome elongation rate and HisRS
concentration from simulations in the updated model when using the optimized HisRS ke = 386 57! (n = 150 cell, gray), kca = 223 g1 (n = 100 cells,
yellow), keat = 183 571 (n = 100 cells, green), and the measured HisRS keae = 142 s7' (n = 150 cells, blue). In the scatter plot, each time step is represented
by a dot. The top histogram shows the distribution of HisRS concentrations. The right histogram shows the distribution of ribosome elongation rates. (I)
Table of characteristics of HisRS k¢, parametric sweep performed in panel H. (a) The portion of time with tRNA aminoacylation limitation was calculated
as the portion of time steps displaying a ribosome elongation rate that was less than the minimum observed ribosome elongation rate in the simulations
performed in the Updated Model when using the optimized aminoacyl-tRNA synthetase kinetic parameters (gray). All cells were simulated in aerobic
growth in M9 Minimal Media supplemented with 0.4% glucose at 37°C. All simulations in this figure represent 10-generation long lineages initialized at 15
(when using the optimized and measured HisRSS k¢, total of n = 150 cells each) or 10 (when using the intermediate HisR'S k¢q values 223 s7! and 183 571,
total of 100 cells each) random seeds in the updated model. Descriptions of the analyses performed in this figure can be found in Supporting Materials,
Section 4.
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Figure 5. Insufficient ArgRS kinetic capacity leads to catastrophic impacts on cellular phenotype via arginine biosynthesis due to abrogated expression
of ArgA. (A) Number of viable simulations (top) and doubling times (bottom) at each generation. Doubling times of cells simulated in the updated model
when using the measured ArgRS k¢ae are shown in blue and compared to the population average when using the optimized k¢, in gray (n = 150 cells).
Error bars indicate the interquartile range. (B) Mass of DNA, RNA, protein and total dry cell mass in a representative 20-generation lineage simulated
in the updated model when using the measured ArgRS k¢, (Variant 4, Seed 8) are shown in blue and compared to a representative cell simulated using
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of arginine tRNAs was the consistent failure mode of using
the measured ArgRS k.

This was a surprise: although decreasing the ArgRS kcy
from its optimized to measured value was the original per-
turbation responsible for the reduced aminoacylation of
arginine tRNAs, the model k¢, was held at a constant value
for each simulation after being set. This means that the Ay
value, although low in these simulations, cannot directly ex-
plain the sudden halt of protein accumulation in Generation
10 (Figure 5C). To unearth the mechanism of this cessation,
we examined other potential causative factors, beginning
with the four main concentration variables in our aminoa-
cylation rate equation (Figure 2D): ArgRS, arginine, un-
aminoacylated arginine tRNAs, and ATP. We compared the
concentrations of these four molecules immediately preced-
ing and following the cell cycle division event when pro-
tein mass accumulation halts (Figure SE). We observed that
the log, ratios of cellular abundance pre- and post-cessation
of protein mass accumulation for ArgRS, arginine tRNAs
and ATP were all close to zero, and agreed with simulations
performed using the optimized ArgRS k.. In contrast, the
pool of free arginine showed a 16.2-fold decrease in cellular
abundance (two-tailed P-value < 1 x 107 calculated from
the z-score for the optimized ArgRS k., average = 81.5).
These results indicated that the ArgRS k.,’s impact on pro-
tein synthesis was in fact not due directly to translation, but
instead related to a previously unknown connection to argi-
nine metabolism.

Thus, to investigate the decreased cellular abundance of
arginine, we first examined the arginine biosynthesis path-

way for enzyme and small molecule concentrations as well
as metabolic fluxes (Figure 5F) for the same lineage as Fig-
ure 5B. Consistent with the previously observed cessation in
protein mass accumulation in Figure 5B, arginine depletion
began at Generation 9 and continued to the start of Gen-
eration 14 (highlighted by the yellow line above the trace
in all subplots of Figure 5F). In contrast, glutamate did
not exhibit a change during the arginine depletion period,
suggesting that the cause of arginine depletion was down-
stream of glutamate. Indeed, we saw that the N-acetyl trans-
fer reaction that consumes glutamate showed a sudden de-
crease at Generation 9 (indicated by the red line on this and
subsequent panels) corresponding to the start of arginine
depletion. Consequently, citrulline, a downstream metabo-
lite, exhibited a depletion period also beginning at Gener-
ation 9 and continuing through the rest of the simulation.
Since the flux through the N-acetyl transfer reaction is im-
pacted by the abundance of the N-acetylglutamate synthase
(ArgA) enzyme, we examined the cellular abundance of N-
acetylglutamate synthase and observed a gradual depletion
from 0.11 wM at the start of the simulation to 0 M at Gen-
eration 9, after which it remained absent from the lincage
for several generations. (We note that the recovery of argi-
nine at Generation 14 is caused by the ribosome elongation
rate decreasing to zero, which causes amino acids that had
experienced depletions to begin re-accumulating.)

The impact of the ArgRS k¢ on the expression of
ArgA was a further surprise, and begged the ques-
tion: how often is ArgA being expressed in the reduced
ArgRS kg, simulations? We investigated the synthesis,

the optimized k¢, (Variant 0, Seed 8, Generation 0) in gray. Green highlights indicate cell cycles when cessation of mass accumulation occurred. Vertical
dashed lines indicate cell division events. Values across the top indicate the generation number. (C) Accumulation of DNA, RNA and protein mass during
each cell cycle. The fold change in mass (calculated as the final mass divided by the initial mass of each cell cycle) in the updated model when using the
measured ArgRS k¢ is shown in blue and compared to the population average using the optimized k¢y¢ in gray (n = 150 cells). Error bars indicate the
interquartile range. Green highlights indicate cell cycles when cessation of mass accumulation occurred. Horizontal dashed lines represent the expectation
of mass doubling at each cell cycle when experiencing exponential growth. (D) Distribution of tRNA aminoacylated percent prior to cessation of protein
mass accumulation for each amino acid family in simulations in the updated model when using the measured ArgRS k¢ (7 = 106 cells). Error bars indicate
the full range of observed values. (E) Similarity of the intracellular abundances of ArgRS, arginine, unaminoacylated arginine tRNAs, and ATP to previous
cell cycles in simulations in the updated model when using the optimized (labeled ‘O’, gray) and measured (labeled ‘M’, blue) ArgRS kcas. Fold change was
calculated by dividing the mean concentration of a given cell cycle by the mean concentration of the previous cell cycle. For simulations using the measured
ArgRS keyt, only cell cycles immediately preceding and following division events exhibiting the cessation of protein mass accumulation were included in
this analysis (n = 20 cells). For simulations using the optimized ArgRS k., which exhibited no protein cessation events, all cell cycles were included (n =
150 cells). Error bars indicate one standard deviation above and below the mean. (F) Characteristics of key small molecules, enzymes, and reaction fluxes
in the arginine biosynthesis pathway in simulations in the updated model when using the optimized (gray) and measured (blue) ArgRS k¢us in the same
lineage as panel B. For simulations using the measured ArgRS k¢, blue lines represent the moving average calculated using a window size of 10 min. For
simulations using the optimized ArgRS kcat, gray lines represent the median value calculated from all 10 generations of the lineage (Variant 0, Seed 8). On
all subplots, the period of arginine depletion is indicated by the yellow line, and the period of absence of the N-acetyl transfer reaction is indicated by the
red line. The solid arrow indicates that glutamate is directly consumed by the N-acetyl transfer reaction, while the dashed arrows indicate the existence
of intermediary reactions that are not shown. (G) Synthesis, degradation, complexation, and hexamer abundance of ArgA in simulations in the updated
model when using the optimized (gray) and measured (blue) ArgRS k48 in the same lineage as panel B. Monomer synthesis, monomer degradation, and
complexation are shown as the number of events per (2-s) time step. Monomer and hexamer abundances are shown as the number of molecules at each
time step. The period of ArgA hexamer absence is indicated by the red line. Vertical dashed lines indicate cell division events. Values across the top indicate
the generation number. (H) Simulated ribosome profiling experiment of codon identities observed on open A sites of ribosomes on arg4d mRNAs in the
updated model when using the optimized (n=150 cells, left) and measured (n = 171 cells, right) ArgRS kc,is. The codon sequence of argA is numbered from
0 (start codon) to 442 (the final sense codon). Colors indicate arginine codons (CGU in blue, CGG in green, CGC in yellow, and AGG in pink) and gray
indicates non-arginine codons. Visualizations above and below summarize the fractions of all ribosome observations that were located on arginine (top)
and non-arginine (bottom) codons. (I) Fraction of ribosomes initiated on arg4 mRNAs that were terminated prematurely in the updated model when using
the optimized (n = 150 cells, top) and measured (n = 171 cells, bottom) ArgRS kcus. Outer ring compares the percentage of ribosomes that successfully
completed translation of arg4 mRNAs (gray) to those that were prematurely interrupted (blue). Inner ring compares the percentage of interruptions that
occurred on arginine codons (yellow) to those that occurred on non-arginine codons (green). All cells were simulated in aerobic growth in M9 Minimal
Media supplemented with 0.4% glucose at 37°C. Simulations of the updated model when using the optimized ArgRS k¢, represent 10-generation long
lineages initialized at 15 random seeds (total of n = 150 cells). Simulations of the updated model when using the measured ArgRS k¢, were initialized as
20-generation long lineages from 10 random seeds, of which n = 171 viable cells were studied. Descriptions of the analyses performed in this figure can be
found in Supporting Materials, Section 4.
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degradation, cellular abundance, and complexation of the
ArgA monomer subunits in addition to the number of
complete N-acetylglutamate synthase hexamers in the cell
(Figure 5G). Whereas simulating with the optimized Ar-
gRS k¢y exhibited robust expression of argA into ArgA
monomers, simulations using the measured ArgRS key
showed only one to two synthesis events per time step
during Generation 0 through 7. At both ArgRS k¢, val-
ues, degradation played a minimal role and complexa-
tion generally occurred when the cell had accumulated
six subunits. Consequently, although both simulations be-
gan with around 80 copies per cell, cells simulated with
the measured ArgRS k¢, did not express argA sufficiently
and quickly depleted their supply of N-acetylglutamate
synthase hexamers. Although the low cellular abundance
of N-acetylglutamate synthase hexamers was tolerable up
through Generation 8, by Generation 9 the number of N-
acetylglutamate synthase hexamers fell to zero (red line
above the trace), causing the inability to accumulate protein
observed in Figure 5B.

To investigate the source of low ArgA expression in our
measured ArgRS k., simulations, we simulated a ribosome
profiling experiment. We monitored the identity of the un-
occupied A site codon of ribosomes processing on argA
mRNAs (Figure SH). The simulations performed with the
optimized ArgRS k., showed an even distribution of time
spent across the transcript, suggesting a steady procession
of ribosomes (left panel of Figure SH). In contrast, simu-
lations using the measured ArgRS k., showed a highly ir-
regular ribosome profile, suggesting frequent interruptions
to ribosome procession. Indeed, decreasing the ArgRS kcy
from its optimized to measured value caused the percent-
age of ribosomes found on arginine codons to increase from
6.9% to 92.8% (90.4% on CGG, 1.6% on CGU, 0.8% on
CGC, and 0.01% on AGG). We found that this increased
pausing on arginine codons led to premature termination
of ribosomes and reduction of protein products (Figure 51):
whereas 86.2% of ribosomes initiated on arg4d mRNAs
completed in simulations using the optimized ArgRS ke,
only 11.7% did so in the measured ArgRS k., case. Fur-
thermore, of these interrupted ribosomes, 98.97% were in-
terrupted while waiting on arginine codons (whereas only
0.05% of ribosomes interrupted in the optimized ArgRS
kear sSimulations experienced those interruptions on arginine
codons). These results indicated that the greater number
of ribosomal pauses on arginine codons led to higher rates
of interruption (and equivalently lower rates of completion
and thereby protein synthesis) of ArgA monomers.

Prompted by these findings, we investigated where the
ribosomes were located on the argd mRNA when they
were prematurely terminated, and found two regions of
high frequency with regard to premature ribosome termina-
tion (Supplementary Figure S5A). First, the tandem CGG
codons at codon positions 153 and 154 (0-indexed posi-
tions) accounted for 76.9% of the premature ribosome ter-
minations, indicating that the tandem CGG codons corre-
spond to the site where the majority of missed ArgA expres-
sion opportunities occur. The second highest site of prema-
ture ribosome termination occurred at a CGG codon at po-
sition 23, which accounted for 13.5% of the terminations.
Examination of the argA sequence showed that these were
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the first three CGG codons encountered by the ribosome
during translation (Supplementary Figure S5B). These find-
ings suggest that the first (or only) instances of CGG codons
along an mRNA’s translatable codon sequence may be sites
that are prone to premature ribosome termination—and es-
pecially so if the CGG codons are in tandem.

This result prompted us to examine whether other pro-
teins with tandemly arranged CGG codons also experi-
enced a reduction in expression. First, we searched for tan-
dem CGGs or other rare arginine codons (AGA or AGG)
in all of the proteins in E. coli. Of 4,307 total proteins, tan-
dem CGGs were found in 114 proteins (listed in Supple-
mentary Table S4), tandem AGAs were found in 35 pro-
teins, and tandem AGGs were found in 5 proteins (Supple-
mentary Figure S5C). Three proteins were found to con-
tain both tandem CGGs and AGAs, 62 proteins contained
no arginine codons, and the remaining 4,094 proteins con-
tained arginine codons that were not tandem arrangements
of CGGs, AGAs or AGGs. To investigate whether the pres-
ence of tandemly arranged rare arginine codons in a pro-
tein’s codon sequence impacts its expression, we compared
the expression of these genes in simulations using the opti-
mized ArgRS k¢, to those using the measured ArgRS key
(which would reduce the availability of arginine-charged
arginyl-tRNAs, Supplementary Figure S5D). We found that
proteins containing tandem CGG codons in particular were
significantly under-expressed, with a reduction of roughly
16.7-fold (two-tailed P-value = 4.7 x 103 calculated from
the z-score for the median (0.06) observed in the ‘CGG,
CGG’ =-2.83; treats ‘No Arginines’ group as the reference
distribution). As a final test, we performed simulations in
which the CGG tandem in argA was changed to a CGU tan-
dem, and again ran simulations using either the optimized
or experimentally measured ArgRS ks (Supplementary
Figure S5E). These sequence changes had no significant im-
pact on ArgA expression with respect to the optimized pa-
rameter strain simulations, but increased ArgA expression
by more than 20-fold when the experimentally-measured
parameters were used (two-tailed p-value = 2.6 x 1072 cal-
culated from the z-score for the mean (276.4) observed in the
‘CGU, Measured ArgRS k¢, distribution = 15.22; treats
‘CGG, Measured ArgRS k¢, as the reference distribution,
Supplementary Figure S5E). Taken together, these results
strongly supported a causal relationship between the CGG
tandem codon and downstream gene expression—not only
for argA, but also other genes.

More broadly, these observations served to build a holis-
tic picture of the reduced ArgRS k¢y’s unanticipated im-
pact on cell growth via arginine biosynthesis—a picture
that connects aminoacylation, the pausing of individual
ribosomes, translational interruption to the synthesis of
N-acetylglutamate synthase, arginine biosynthesis, back to
aminoacylation (via the arginine saturation fraction, rather
than the k,) and finally to cessation in protein mass accu-
mulation (Figure 6A). Compared to the optimized ArgRS
keat, the maximal aminoacylation rate of arginine tRNAs
reduced 1.6-fold from 154 wM/s (average of all 10 genera-
tions) to 98.0 wM/s (average of Generations 0 through 8)
then dwindled to 8.4 wM/s during Generations 12 through
15. The aminoacylated fraction, which maintained stable
levels at 84.2% in the optimized ArgRS k.., dropped to near
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Figure 6. The link between arginine tRNA pools and ArgA expression predicts a positive feedback mechanism regulating the arginine biosynthesis pathway.
(A) Holistic view of the impact of ArgRS aminoacylation capacity on cell growth in representative lineages simulated in the updated model when using
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zero values in the measured ArgRS k¢, until Generation 13
when the replenished arginine pool and slowed ribosome
elongation rate (depicted in downstream rows in Figure 6A)
caused tRNA pools to accumulate in their aminoacylated
forms. Simultaneously, ribosomes translating arg4A mRNAs
were observed to terminate prematurely during their proces-
sion, as indicated by the ribosomes on the beginning por-
tion of the arg4 mRNA frequently being unable to trans-
late beyond the tandem CGG codons at sequence positions
153 and 154 compared to the optimized ArgRS k., case
(also apparent in Figure 5H), where the vast majority of
ribosomes continued to translate beyond position 154 to
the end of the transcript. Accordingly, the accumulation of
ribosomes on arg4 mRNAs increased from an average of
1.9 ribosomes per transcript in the optimized ArgRS case
to 3.5 (average of Generations 0 through 8)—and a max-
imum of 40 in the beginning of Generation 5—ribosomes
per transcript in the measured ArgRS case. This trend ex-
tended into the premature ribosome termination rate, which
increased from an average rate of 2.5 x 1072 s”! in the opti-
mized ArgRS simulations to 3.6 x 1072 57! (average of Gen-
erations 0 through 8)—and a maximum of 17.5 s”! in the
beginning of Generation 8—in the measured ArgRS case.
Consequently, the cellular abundance of ArgA monomers
reduced 1.7-fold from an average of 2.8 monomers when us-
ing the optimized ArgRS k., to 1.7 (average of Generations
0 through 7) in the measured ArgRS k., case, followed by a
complete absence of ArgA monomers for the remainder of
the simulation. These trends carried over to the number of
hexamers: an average of 21.4 copies of N-acetylglutamate
synthase per cell in the measured ArgRS k., case (average
of Generations 0 through 8), compared to the average abun-
dance of 92.1 hexamers in the optimized case. Correspond-
ingly, not only were N-acetylglutamate synthase hexamers
unable to accumulate but the hexamer count also halved at
each division event, diminishing to just two copies in Gen-
eration 8 and zero copies by Generation 9 and onwards (in-
dicated with a red line)—a stark contrast to the optimized
ArgRS k., simulations, which showed regular exponential
accumulation of the hexamer that resulted in an average of
2.0-fold increases during each generation. The absence of
N-acetylglutamate synthase enzymes directly impacted the
rate of the N-acetyl transfer reaction: decreasing from an
average of 0.31 mmol per gram dry cell weight per hour in
the optimized ArgRS k¢, simulations to 7.8 x 1072 (aver-
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age of Generations 0 through 8)—and zero flux in Genera-
tions 9 and onwards (indicated with a red line)—in the mea-
sured ArgRS k., simulations. As a result, the cellular pool
of arginine experienced a period of depletion, decreasing
from its steady level of 286.5 wM when using the optimized
ArgRS keat to 21.4 uM during Generations 9 through 13 in
the measured ArgRS k., simulations. In turn, the decreased
arginine pool impacted fractional saturation of the ArgRS
enzyme for arginine, which decreased from 0.59 in the op-
timized ArgRS ke, case to 8.7 x 10~2 during Generations
9 through 13 in the measured ArgRS k¢, case. The orig-
inal perturbation (decreasing the ArgRS kg, from its opti-
mized to measured value) and the decreased fractional satu-
ration, together, influenced the aminoacylation rate of argi-
nine tRNAs: decreasing from the steady rate of 22.2 wM/s
in the optimized ArgRS k., simulations to 5.8 wM/s dur-
ing Generations 0 through 8, 0.2 wM /s during Generations
9 through 13, and zero thereafter. At the cellular scale, the
reduced aminoacylation rate of arginine tR NAs directly im-
pacted the ribosomal elongation rate, which decreased from
a steady rate of 17.5 amino acids per second per ribosome
when using the optimized ArgRS k¢, to 5.6 amino acids per
second per ribosome in the measured ArgRS k., case dur-
ing Generations 0 through 8, 0.3 amino acids per second per
ribosome during Generations 9 through 13, and zero there-
after. Finally, the functional consequence of this limiting
arginine biosynthetic enzyme presented itself as the cessa-
tion of protein mass accumulation starting at Generation 9,
first noted in Figure 5B, that exacerbated the slowed growth
observed in Figure 5A.

DISCUSSION

In summary, we investigated the previously reported enigma
of aminoacyl-tRNA synthetases: that their measured ki-
netic capacities may not be sufficient to support protein syn-
thesis in the cell (3). By incorporating a detailed and mech-
anistic representation of tRNA aminoacylation and codon-
based polypeptide elongation into the E. coli model, we
could examine the measured aminoacyl-tRNA synthetase
keats within a simulated context of the living cell. We found
that the required kg, s were up on average 7.6-fold higher
than the highest measurements from our curation, and we
identified through two aminoacyl-tRNA synthetase case
studies—HisRS and ArgRS—that both a modest and sub-

the optimized (Variant 0, Seed 8, all 10 generation on the left) and measured (Variant 6, Seed 8, all 20 generations on the right) ArgRS k¢as. From top to
bottom: 1) maximal aminoacylation rate of arginine tRNAs, 2) aminoacylated fraction of arginine tRNAs, 3) position (and codon identities by color: CGU
in blue, CGG in green, CGC in yellow, AGG in pink, and non-arginine codons in gray) of ribosomes on arg4 mRNAs, 4) number of ribosomes per arg4
mRNA, 5) premature termination rate of ribosomes from arg4d mRNAs, 6) number of ArgA monomers, 7) number of ArgA hexamers (N-acetylglutamate
synthase), 8) flux through the N-acetyl transfer reaction in the arginine biosynthesis pathway, 9) concentration of arginine, 10) fractional saturation of
ArgRS for its substrate arginine, calculated as WAL[A]) , where [A] is the concentration of arginine and Ky 4 is the Michaelis—Menten constant describing
the affinity between arginine and ArgRS, 11) aminoacylation rate of arginine tRNAs, 12) ribosome elongation rate, and 13) total protein mass. Vertical
dashed lines indicate cell division events. Values across the top indicate the generation number. Red lines in rows 7 (ArgA hexamers), 8 (N-acetyl transfer
reaction), 11 (aminoacylation rate of arginine tRNAs), and 12 (ribosome elongation rate) indicate the period of time when the quantity shown (number
of molecules, reaction flux, or rate) had a value of 0. All cells were simulated in aerobic growth in M9 Minimal Media supplemented with 0.4% glucose
at 37°C. (B) Positive feedback by ribosomal pausing on tandem CGG codons on arg4 mRNAs. Arginine availability impacts the aminoacylation of argX’
tRNAs with arginine, which in turn influences the ability of ribosomes to read through tandem CGG codons on arg4 mRNAs. Successful translation
of argA mRNAs leads to the production of ArgA, the first enzyme in the arginine biosynthesis pathway. (C) Regulatory mechanisms characterizing the
arginine biosynthesis pathway. The propagating impact of using the lower, measured ArgRS k¢, on cell physiology suggests the presence of a regulatory
positive feedback link through ribosomal pausing on tandem CGG codons when translating the mRNA transcript for the arginine biosynthetic enzyme
ArgA. Descriptions of the analyses performed in this figure can be found in Supporting Materials, Section 4.
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stantial decrease in k¢, from the optimized to measured
values can have a significant impact on cell growth. In the
case of HisRS, we discovered that ribosome elongation rates
were sensitive to aminoacyl-tRNA synthetase variability
when using the measured k., and that the higher, optimized
keat overcame this sensitivity. The ArgRS study led us to a
more complex situation which linked several processes that
impair cell growth via a non-intuitive, emergent mechanism.

Overall, our work strongly supports Jakubowski and
Goldman’s original assessment that the measured activities
of aminoacyl-tRNA synthetases are too low to be compat-
ible with cellular demands for protein synthesis. In fact, we
calculated an even higher overall k., requirement, as they
anticipated in their original paper. We found that the pri-
mary source of this difference between estimates was the
dynamic range of aminoacyl-tRNA synthetase concentra-
tions in the single-cell context. While the calculations per-
formed by Jakubowksi and Goldman were informed by av-
erage measurements, we found that examining the lowest
aminoacyl-tRNA synthetase concentration during the cell’s
life is of critical importance, for the simple reason that cell
growth must be robust to variance in protein expression.

Other related studies provide insight as to the mecha-
nism of how this higher activity might be achieved. No-
tably, the phenomenon of macromolecular crowding has
been reported to impact the dynamics of molecules in liv-
ing cells (24-26). For example, Maheshwari and colleagues
built a detailed, physics-based model of the E. coli cyto-
plasm and reported that the improved proximity between
ternary complexes and ribosomes facilitated by a crowded
environment reduced the search distance between ternary
complexes and ribosomes, which could enable individual ri-
bosomes to become more productive than widely believed
(27). Along these same lines, the use of co-solute crow-
ders has enabled crowded environments to be replicated
in in vitro settings and has been reported to increase pro-
tein synthesis rates when added to cell-free expression sys-
tems (28). Spectrophotometric methods have also emerged
alongside the traditional method of detecting radiolabeled
molecules to determine aminoacyl-tRNA synthetase activi-
ties (29,30). One such technique (31) indicated that the addi-
tion of tRNA—which is typically absent in traditional PPi
exchange assays (32)—promoted continuous amino acid ac-
tivation and thereby greater detection of PPi release. The
role of post-transcriptional modifications of tRNAs has
also been noted to impact the identity elements that de-
termine aminoacyl-tRNA synthetase specificity (33). As
such, the differences between native (modified) and in vitro
transcribed (unmodified) tRNAs (34-37) may influence
recognition of tRNA substrates by their aminoacyl-tRNA
synthetase enzymes. Indeed, Clifton et al. found that re-
placement of m' G37-modified tRNA with G37-unmodified
tRNA resulted in a 17-fold reduction in aminoacylation
(38). Given such findings, we consider the optimized ks
presented in this study to be initial estimates; we anticipate
that the E. coli model will produce more precise predictions
as additional measurements are made and subsequently in-
corporated, and the model thereby develops further over
time.

Our most striking result was that the consequence of low
ArgRS ke, reproducibly routed to the arginine biosynthe-

sis pathway. We anticipated insufficient aminoacyl-tRNA
synthetase activities would impact protein synthesis—and
that this in turn would reach a variety of functions based
on the stochastic nature of gene expression in the cell. This
agrees with what we saw in the HisRS case, which showed
that a modest (2.7-fold) decrease of aminoacyl-tRNA syn-
thetase activity led to decreases in global ribosome elonga-
tion rate that generated simulations of cells that could com-
plete their cell cycles, albeit slowly. In the case of ArgRS,
however, the more dramatic 8.1-fold decrease of activity
caused a prolonged insufficiency that caused decreased ex-
pression of the arginine biosynthetic enzyme ArgA through
ribosome pausing at tandem CGG arginine codons, sug-
gesting a regulatory positive feedback link between arginine
tRNA pools and the synthesis of arginine itself (Figure 6B).

Reminiscent of the mechanism of ribosome-mediated
transcriptional attenuation, the presence of tandem CGG
arginine codons in the coding region of ArgA (and possibly
other genes listed in Supplementary Table S4) may serve as
a sensor of arginyl-tRNA abundance. A potential reason
for our simulated cell’s particular sensitivity to the CGG
codon identity may be that the CGG codon is only read by
its cognate tRNA, arg X (with anticodon 5°-CCG-3’). Since
the arg X tRNA is the lowest abundant arginine tRNA, both
in our simulations and by experimental measurement (18),
it may be the most sensitive tRNA to reduced ArgRS k.
In contrast, the CGU codon can be read by 4 different argi-
nine tRNAs—argQ, argV, argY and argZ—which are the
top 4 most abundant arginine tRNAs with a total mean
abundance of 2635 molecules per cell (11.9-fold greater than
argX).

Interestingly, a corroborative finding was reported by
McNulty and colleagues in their study of tandem triplet
CGG codons occurring in the coding region for a p27 pro-
tease from Herpes Simplex Virus 2 (HSV-2) (39). When
expressed in E. coli, +1 frameshift events were observed
from both the second and third CGG codons in the triplet
cluster. Additionally, significant levels of glutamine misin-
corporation for arginine were reported, which the authors
suggest resulted from second base misreading of CGG as
CAG. However, coexpression of the argX gene eliminated
the frameshifts and misincorporation events, and increased
expression by up to 7-fold.

Taken together, these findings suggest that the presence
of tandem CGG codons located at positions 153 and 154 in
the argA codon sequence is sensitive to reduced availability
of arginine-charged arginyl-tRNAs. As a result, the tandem
CGG codons may be able to serve as a site of regulation
that responds to reduced arginine availability by increas-
ing the chance of premature ribosome termination. This be-
havior can be classified as a positive feedback mechanism
that responds to high arginine availability by increasing the
chance of successful translation events. The predicted pres-
ence of this positive feedback mechanism, together with
the previously known negative feedback mechanisms pro-
vided by both transcriptional repression by arginine-bound
ArgR and direct inhibition of ArgA by arginine, prompt
us to re-classify the regulation of the arginine biosyn-
thesis pathway as a combination positive-and-negative
feedback loop (Figure 6C). Pfeuty and Kaneko have re-
ported that such combination feedback loops confer rapid
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and reversible responses to changing environments (40),
which may be applicable to the cell’s response to arginine
depletion.

The model reported in this work could be further
strengthened by incorporating richer representations of the
translation machinery. Aminoacyl-tRNAs have been re-
ported to bind elongation factor Tu with uniform binding
affinities (41). Incorporating a mathematical model of these
interactions (such as in (42)) may further elucidate how
the delivery of aminoacyl-tRNAs to ribosomes informs the
activities of aminoacyl-tRNA synthetases in vivo. In addi-
tion, representing ribosome procession to a finer resolu-
tion would enhance the analyses presented in this study. For
example, volume exclusion of polysomes on shared tran-
scripts was captured by Levin and Tuller (7), but is not
currently modeled here. Additionally, incorporating mea-
surements of ribosome residence times on codons (43), es-
timations of translation times at the codon resolution (44),
the influence of mRNA and nascent-peptide sequences on
elongation dynamics (45), and a mechanistic model of ri-
bosomal frameshifting (46) may further characterize the re-
lationship between aminoacyl-tRNA synthetase kinetic ca-
pacities and ribosome elongation rates. Furthermore, the E.
coli model does not yet represent a detailed kinetic scheme
of codon reading by tRNA and release factors, such as
demonstrated by Ieong and colleagues (47). Incorporating
their model may improve the granularity of ribosome elon-
gation dynamics. Additionally, representing ribosome paus-
ing (at Proline-Proline motifs (48) and at Shine-Dalgarno
like sequences (49)) and rescue (by alternative ribosome-
rescue factor A (50,51)) may enable new insights regarding
the impact of insufficient aminoacyl-tRNAs on ribosome
procession. Moving forward, we note that the (p)ppGpp-
mediated stringent response in E. coli is known to be acti-
vated by the presence of non-aminoacylated tRNAs in the
ribosome A site (52,53). Integrating this work with a model
of growth rate control via ppGpp that was recently imple-
mented in our lab (54) would give us the opportunity to ex-
plore overall growth responses in amino acid-limited media,
building on work such as that of Elf ez al. (6).

Finally, we recognize that the detailed and holistic inves-
tigations performed here were only made possible by em-
bedding the tRNA aminoacylation system into a large-scale
model that already accounts for millions of data points re-
ported in thousands of studies by hundreds of labs over the
past several decades (5). Taken together, the expansion to
the E. colimodel reported here advances the depth of mech-
anistic detail incorporated into the translational machinery
and enhances the breadth of potential for generating pre-
dictions and accelerating biological discovery. We anticipate
that as other functionalities are incorporated into the E. coli
Whole Cell Modeling Project (8), similarly remarkable and
unexpected phenotypes will continue to emerge and cat-
alyze the accompanying biochemical and/or cell biological
measurements that lead to new discoveries.
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