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ABSTRACT 

In Esc heric hia coli , inconsistencies between in vitro 

tRNA aminoacylation measurements and in vivo 

protein synthesis demands were postulated almost 
40 years ago, but have proven difficult to confirm. 
Whole-cell modeling can test whether a cell behaves 

in a physiologically correct manner when parame- 
terized with in vitro measurements b y pr o viding a 

holistic representation of cellular processes in vivo . 
Here, a mechanistic model of tRNA aminoacylation, 
codon-based polypeptide elongation, and N-terminal 
methionine c leav age was incorporated into a devel- 
oping whole-cell model of E. coli . Subsequent analy- 
sis confirmed the insufficiency of aminoacyl-tRNA 

synthetase kinetic measurements for cellular pro- 
teome maintenance, and estimated aminoacyl-tRNA 

synthetase k cat s that were on average 7.6-fold higher. 
Simulating cell growth with perturbed k cat s demon- 
strated the global impact of these in vitro measure- 
ments on cellular phenotypes. For example, an insuf- 
ficient k cat for HisRS caused protein synthesis to be 

less r ob ust to the natural v ariability in aminoacyl- 
tRNA synthetase expression in single cells. More 

surprisingl y, insufficient Ar gRS activity led to catas- 
trophic impacts on arginine biosynthesis due to 

underexpressed N-acetylglutamate synthase, where 

translation depends on repeated CGG codons. Over- 
all, the expanded E. coli model deepens understand- 
ing of how translation operates in an in vivo context. 
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INTRODUCTION 

Since the introduction of the first tissue 
culture –– established in principle by Wilhelm Roux in 

1885 and later demonstrated by Ross Harrison in 1907 

( 1 ) –– in vitro studies hav e enab led detailed inv estigations 
performed in controlled environments, leading to countless 
important discoveries and insights. That said, extrapolating 

such findings to living cellular contexts is challenged by the 
degree to which the in vitro environment reflects its in vivo 

counterpart. As such, consideration of the in vivo context 
is essential for determining the impact in vitro findings may 

have on the coordinated system of biological processes 
occurring inside living cells ( 2 ). Essential as it may be, 
the in vivo context is often not experimentally accessible. 
W ha t is ther efor e needed ar e methods that enable us to 

accura tely estima te in vivo properties –– or evaluate in vitro 

measurements –– in the background of a holistic cellular 
context. 

In Esc heric hia coli , one important example of in vitro 

measurements being inconsistent with in vivo demands 
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concerns tRNA aminoacylation and protein synthesis, 
as first identified by Jakubowski and Goldman almost 
forty years ago ( 3 ). Seeking to determine the turnover 
of aminoacyl-tRNAs in vivo , Jakubowski and Goldman 

pulse-labeled E. coli cultures with radioacti v e amino acids. 
By dividing their measurements of amino acid incorpo- 
r ation r ates into protein (molecules per cell per second) 
by the amounts of aminoacyl-tRNA synthetase (molecules 
per cell), they were able to estimate the lower limits of 
aminoacyl-tRNA synthetase activities (s -1 ). Comparing 

these minimal in vivo activities with in vitro measurements of 
purified preparations of aminoacyl-tRNA synthetases led 

to a surprising inconsistency: with one exception (GluRS), 
in vitro r eports wer e 3- to 240-fold lower than their most 
conservati v e estimates of in vivo activities. This study raised 

se v eral critical questions that remain unanswered, such as: 
Why do these in vitro measurements underestimate cellu- 
lar demands so dramatically? If the measured activities are 
truly too low to support the cell’s needs, how much higher 
must they be? And finally, could our reliance on the in vitro 

measurements cause us also to miss or misinterpret impor- 
tant cellular phenotypes? 

Addressing these questions requires the use of compu- 
tational approaches that can incorporate in vitro measure- 
ments into a simulation of the in vivo context. In particular, 
whole-cell modeling is an approach that takes into account 
all the genes and known functions of an organism to pre- 
dict phenotypes –– consolidating millions of data points into 

a dynamic r epr esentation of the intracellular system dur- 
ing the cell cycle. A major advantage of whole-cell mod- 
eling is that multiple biological processes –– such as chro- 
mosome replication, tr anscription, tr anscriptional regula- 
tion, translation, metabolism, RNA and protein degrada- 
tion, complexation, and cell division –– are simulated simul- 
taneously as the in vivo environment e volv es ov er time. Ac- 
cordingl y, w hole-cell models provide the in vivo context that 
tests whether the cell can behave in a physiologically cor- 
rect manner when parameterized with measurements and 

re v eals the propagating impact of these measured parame- 
ters throughout the intracellular system, thereby offering a 

rich environment for discovery. 
Aminoacylation of tRNAs has posed an intriguing mod- 

eling challenge in previous large-scale models de v eloped by 

our group, including Mycoplasma genitalium in 2012 ( 4 ) and 

E. coli in 2020 ( 5 ). Pools of tRNAs are known to turnover 
ra pidl y, with pulse-labeling measurements reporting that in- 
dividual tRNA molecules undergo 1.8 to 8.1 aminoacyla- 
tion cycles per second depending on the amino acid family 

( 3 ). Within the whole-cell modeling frame wor k, which as- 
sumes that time steps are short enough to consider biolog- 
ical submodels independently, these fast turnovers meant 
tha t the separa tion of tRNA aminoacyla tion from transla- 
tion would cause tRNA pools to deplete during the simu- 
lated time step, which is typically set to 1–2 s. Se v eral solu- 
tions were considered to overcome this obstacle: (i) shorter 
time steps, which would increase the runtime, (ii) ov ere x- 
pression of tRN As, w hich helped to enable the M. geni- 
talium model ( 4 ), and (iii) assuming a sufficient supply of 
aminoacyl-tRNAs and approximating their role by direct 
polymerization of amino acids, as implemented in the first 
version of the E. coli model ( 5 ). Howe v er, none of these 
approaches are able to address the central questions posed 

by Jakubowski and Goldman because they do not include 
the mechanistic r epr esentation or kinetic information that 
would be r equir ed. 

Other groups have focused specifically on tRNAs in 

their models of translation. For example, Elf and col- 
leagues modeled how aminoacylation le v els of different 
tRN A isoacceptors respond w hen their co gnate amino 

acids become growth-limiting, as informed by tRNA con- 
centrations, codon usage frequencies, and codon specifici- 
ties of different isoacceptors ( 6 ). Their work presented 

the theory of selecti v e aminoacylation during amino acid 

limita tion –– meaning tha t dif ferent isoacceptors of the same 
amino acid will reach different stead y sta te aminoacyla- 
tion le v els in response to limitation of their cognate amino 

acid –– and predicted codon sensitivities to amino acid star- 
vation. Levin and Tuller modeled the major components of 
translation –– such as ribosomes, mRNAs and tRNAs –– and 

competition for ribosomes and tRNAs at the codon resolu- 
tion using a novel Multiple Pool State Machine Translation 

Model (MP-SMTM) approach (as opposed to a kinetics- 
based approach) to dri v e simula tion d ynamics ( 7 ). Their 
work showed that the MP-SMTM approach could predict 
the outcome of heterologous gene expression. Although 

other aspects of the cell related to translation were repre- 
sented by Levin and Tuller, such as ribosome activity and 

mRNA pools reflecting the transcriptome, a complete rep- 
resentation of cellular behavior was not a focus of either of 
these studies. 

Taking inspiration both from these studies and our pre- 
vious work, we expanded our large-scale model of E. coli 
to describe tRNA aminoacylation rates kinetically. This 
enabled us to test whether the measured and Jakubowski 
and Goldman-predicted rate constants related to aminoa- 
cylation are sufficient for the cell’s normal function, and if 
not, to estimate what the r equir ed parameter values would 

need to be. We found that in fact, the measured aminoacyl- 
tRNA synthetase activities are insufficient to maintain the 
demands of the cellular proteome and that the r equir ed val- 
ues are on average 7.6-fold higher. We also found that the 
higher, predicted in vivo acti vities enab led the cell to over- 
come the ribosome elonga tion ra te’s sensitivity to the nat- 
ural variability in aminoacyl-tRNA synthetase expression 

in single cells. Finally, we show that the in vitro measure- 
ments can lead to catastrophic impacts on cellular phe- 
notype via a pr edicted r egulatory feedback link between 

aminoacyl-tRNAs and ribosomal pausing at tandem cog- 
nate codons –– in this case, arginine. In total, our findings 
suggest tha t computa tional modeling can r epr esent a bridge 
between in vitro measurements and in vivo understandings. 

MATERIALS AND METHODS 

Materials and methods can be categorized into three pri- 
mary areas: model construction, parameter estimation and 

details of the specific simulations and follow-on analysis. 
These are detailed in the Supporting Materials, but are also 

described briefly below. 

Hybrid deterministic-stochastic model 

To be compatible with both the deterministic and stochas- 
tic qualities of the tRNA aminoacylation cycle and the 
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whole-cell modeling frame wor k (described in Supporting 

Materials, Section 1), a three-step strategy was de v eloped: 
(i) calculate the kinetic limitations of aminoacyl-tRNA syn- 
thetases by simulating the tRNA aminoacylation cycle as a 

deterministic ODE model described by Michaelis-Menten 

enzyme kinetics, (ii) process ribosomes along their mRNAs 
according to these kinetic limitations and the sequential or- 
der in which ribosomes encounter codons on mRNAs and 

(iii) stochastically reconcile any disagreements between the 
kinetic- and sequence-determined constraints. Derivation 

of the ODEs used, molecules r epr esented, and codon-to- 
anticodon interactions modeled can be found in Supporting 

Materials, Section 1. 

Optimization of aminoacyl-tRNA synthetase kinetic 
parameters 

Parameter estimation of the aminoacyl-tRNA synthetase 
kinetic parameters was described as objecti v e minimization 

problems, where each aminoacyl-tRNA synthetase was de- 
scribed as an independent optimization problem that aims 
to minimize the differences between the rates of tRNA 

aminoacyla tion and aminoacyl-tRNA utiliza tion. The ra tes 
of tRNA aminoacylation were described by Michaelis– 

Menten enzyme kinetics as in the hybrid deterministic- 
stochastic model. The rates of aminoacyl-tRNA utilization, 
or relatedly the codon reading rates, were deri v ed from the 
principle that the protein content of the cell must grow ex- 
ponentially and double at the measured doubling time. De- 
sign of the objecti v e function, deri vation of the codon read- 
ing rates, values of constant parameters, and generation of 
candidate solutions can be found in Supporting Materials, 
Section 2. 

Simulation and analysis 

The model presented in this study was implemented into 

the polypeptide elongation sub-model of the first version 

of the E. coli model ( 5 ). A comparison of the prior and up- 
dated models and a summary-le v el flowchart of the compu- 
tational steps that take place within each time step is shown 

in Figure 1 . The primary changes to the polypeptide elon- 
gation sub-model occur in the estimation of ribosome steps, 
determination of kinetic and codon sequence order feasibil- 
ity, reconciliation of kinetic and sequence solutions, and up- 
date of molecular abundances. These changes are described 

in Supporting Materials, Section 3. Additionally, the total 
set of simulations and analyses performed are detailed in 

Supporting Materials, Section 4. 

RESULTS 

A mechanistic model of tRNA aminoacylation, codon-based 

polypeptide elongation, and N-terminal methionine cleavage 
is incorporated into the developing whole-cell model of E. coli 

To better account for the tRNA-related translation mech- 
anisms noted abov e, we e xpanded the translation model 
contained within the most recently published version of 
the E. coli Whole-Cell Modeling Project ( 5 , 8 ) in three pri- 
mary areas: tRNA aminoacylation, codon-based polypep- 
tide elongation, and N-terminal cleavage of initial methion- 

ines. A schematic of the prior model ( 5 ) is shown in Fig- 
ure 1 A, and the ne w, e xpanded model is shown in Figure 1 B. 

First, we incorporated the aminoacylation of tRNAs 
by aminoacyl-tRNA synthetases. As mentioned above, the 
prior model assumed that the supply of aminoacyl-tRNA 

synthetases and aminoacyl-tRNAs were sufficiently abun- 
dant and did not limit the elongation rate of ribosomes. In 

the current stud y, aminoacyla tion was r epr esented accord- 
ing to Michaelis–Menten enzyme kinetics, which enabled 

the aminoacylation rates to respond to changes in abun- 
dances of aminoacyl-tRNA synthetase enzymes and their 
substra tes (Supporting Ma terials, Section 1.1). This addi- 
tion introduced the description of aminoacyl-tRNAs to our 
simulated cells. 

Second, to facilitate amino acid transfer by elongating ri- 
bosomes, the amino acid-based polypeptide elongation de- 
sign of the prior model was detailed to the codon le v el as 
part of a hybrid deterministic-stochastic model (Support- 
ing Materials, Sections 1.2 and 1.3). Codon-to-anticodon 

interactions were designed to obey Watson-Crick base pair- 
ing rules (such as the serine-co gnate serV tRN A with anti- 
codon 3’-UCG-5’ decoding codon 5’-AGC-3’ in Figure 1 B) 
and the Wobble Hypothesis (such as the l ysine-co gnate l ysY 

tRNA with anticodon 3’-UUU-5’ decoding codon 5’-AAG- 
3’, also in Figure 1 B) –– with the exception of three codons 
for which experimental measurements indicated more spe- 
cific interactions. These exceptions are: arginine codons 5’- 
CGA-3’ and 5’-CGC-3’, which were reported to be decoded 

by tRNA isoacceptors argQ , argV , argY and argZ with an- 
ticodon 3’-GCI-5’, where I is inosine –– an adenosine deriva- 
ti v e ( 9 , 10 ), and isoleucine codon 5’-AUA-3’, which was re- 
ported to be decoded by tRNA isoacceptors ileX and ileY 

with anticodon 3’-UAL-5’, where L is lysidine –– a cytidine 
deri vati v e ( 11 , 12 ). 

Third, we incorporated the N-terminal cleavage of initial 
methionines by Methionine Aminopeptidase (MAP) (Sup- 
porting Materials, Section 1.4). Due to its use of the primary 

amino acid sequence of polypeptides, the prior model syn- 
thesized proteins in their mature form. In contrast, by incor- 
porating codon-based polypeptide elongation in this study, 
we synthesized immature forms of polypeptides including 

the initial methionine residue of all nascent polypeptides. 
In turn, this de v elopment facilitated the description of N- 
terminal cleavage of initial methionines by MAP for its an- 
nota ted substra tes ( 13 ). 

These expansions were implemented in the polypeptide 
elongation sub-model of the E. coli model (Figure 1 C 

and Supporting Materials, Section 3). When estimating the 
number of steps ribosomes were anticipated to take dur- 
ing a time step, the prior model’s retrieval of the amino 

acid sequence of the mature polypeptide ( n A , i ) was replaced 

with the current model’s retrieval of the codon sequence of 
the mRNA transcript ( n C , i ). Consequently, the determina- 
tion of the number of feasible ribosome steps was changed 

from a comparison of n A , i with the number of available 
amino acids in the cell to a calculation of the kinetically- 
feasible number of codon reading events, as determined by 

solving a system of ODEs describing the tRNA aminoa- 
cylation cy cle. Afterwar ds, ribosomes process along mR- 
NAs according to the sequence order of codons while obey- 
ing the feasible number of elongation steps that can occur. 
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Figure 1. A mechanistic model of tRNA aminoacylation, codon-based polypeptide elongation, and N-terminal methionine cleavage is incorporated into 
the de v eloping whole-cell model of E. coli . ( A ) Prior model of E. coli appr oximated the r ole of aminoacyl-tRNAs by direct polymerization of amino acids 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/12/5911/7177890 by Stanford U

niversity Law
 Library [BILLIN

G
 AC

C
O

U
N

T] user on 20 Septem
ber 2023



Nucleic Acids Research, 2023, Vol. 51, No. 12 5915 

Any disagreements between the kinetically-determined and 

sequence-determined number of ribosome steps are recon- 
ciled stochastically (Supplementary Figure S1 and Support- 
ing Materials, Section 3.3). 

In summary, these impr ovements intr oduced the func- 
tional r epr esentations of 22 synthetase subunits, all 85 tR- 
NAs of the 20 canonical amino acids, the 61 sense codons, 
and MAP (Table 1 ). 

Deep curation confirms and quantifies the insufficiency of 
aminoacyl-tRNA synthetase kinetic measur ements f or main- 
tenance of the cellular proteome 

As mentioned above, Jakubowski and Goldman proposed 

that measured tRNA aminoacylation rates are not high 

enough to adequately support cell gro wth ( 3 ). Ho we v er, 
this proposal was ne v er fully explored. Thus, we curated 

131 k cat measurements from 81 studies representing all 20 

aminoacyl-tRNA synthetases (Supplementary Table S1) to 

inform the simulated rates of tRNA aminoacylation in our 
model. To make a conservati v e first estimate, we selected 

the largest measured k cat s from our data compilation and 

described the aminoacyl-tRNA synthetase enzymes as fully 

sa tura ted so that the maximum enzyme flux could be cal- 
culated as v max = k cat [ E ], where [ E ] is the concentration of 
aminoacyl-tRNA synthetases and is retrie v ed from the cel- 
lular content of the simulated cell at each time step. We 
then ran 50 randoml y-seeded sim ulations in the updated 

model introduced by the current study, each two genera- 
tions long (100 simulations in total), r epr esenting aerobic 
growth in M9 Minimal Media supplemented with 0.4% glu- 
cose a t 37 

◦C . This condition has pr eviously been measur ed 

to have a 44-min doubling time ( 14 , 15 ). We found that, in 

contrast to the prior model (with unlimited tRNA aminoa- 
cylation), which showed an average doubling time of 48.8 

min and agreed well with the 44-min measurement (two- 
tailed P -value = 0.26 calculated from the z -score for the 
44-minute measurement = 1.12), the simula tions tha t incor- 
porated the measured k cat s resulted in a 3.1-fold increase in 

av erage doub ling time to 150 minutes (two-tailed P -value = 

1.2 × 10 

−6 , z -score = 4.86) (Figure 2 A). Moreover, 9% of 
the cell simulations reached the 3-h upper limit of simula- 
tion time, at which point our model automatically halts sim- 
ulations as a control on computational r esour ces. Thus, in 

agreement with Jakubowski and Goldman’s assertion, the 

whole-cell model simulations confirmed that measured k cat s 
were incompatible with measured doubling times. 

We hypothesized that the increased doubling times were 
associated with decreased protein biomass. Accordingly, we 
examined the accumulation of protein versus non-protein 

mass over the cell cycle in a r epr esenta tive simula tion (Fig- 
ure 2 B). Although the cell nearly doubled its mass (2.2-fold 

increase in total dry mass) during its 150.1-min cell cycle, 
the cellular components did not double in a balanced man- 
ner: protein mass lagged behind at a 1.6-fold increase while 
non-protein mass (DNA, RNA, and small molecules) ad- 
vanced ahead at a 2.7-fold increase. Expanding our exam- 
ination to the full set of simulations re v ealed a consistent 
under-pr oduction of pr otein (1.6-fold average increase in 

protein mass, two-tailed P -value = 6.6 × 10 

−5 calculated 

from the z -score for the 2-fold expectation for cell doubling 

= –3.99) and over-production of non-protein components 
(2.3-fold average increase in non-protein mass, two-tailed P - 
value = 0.16, z -score = 1.41), resulting in roughly doubled 

total dry cell mass (2.0-fold average increase in dry mass, 
two-tailed P -value = 0.99, z -score = 0.01) (Figure 2 C). This 
confirmed that the tRNA aminoacylation rates were insuffi- 
cient for the maintenance of the cellular proteome but suffi- 
cient for non-protein components, at least in the short term. 

To further investigate the source of the observed growth 

insufficiency, we considered the mathematical r epr esenta- 
tion of the tRNA aminoacylation reaction (Figure 2 D). 
For this specific analysis, we assumed that tRNAs were 
aminoacyla ted a t their maximal reaction rates in our proto- 
type, meaning that only two parameters –– the rate of cataly- 
sis k cat and the aminoacyl-tRNA synthetase concentration 

[ E ] –– could be directly responsible for the low protein mass 
accumulation we observed. We considered each of these pa- 
rameters in turn. With regard to the [ E ] term, we compared 

the simulated proteome against a proteomic dataset ( 16 ) 
that was not used in the construction of the model (Fig- 
ure 2 E). With the exception of proteins with low copies 
per cell (for which small differences appear amplified on 

a lo g-lo g plot), w e observed good agreement betw een the 
overall simulated proteome and the measurement (coeffi- 
cient of determination, R 

2 = 0.63 for proteins existing at 
30 or more copies per cell). In particular, the 17 aminoacyl- 
tRNA synthetase subunits that were measured appeared 

within one order of magnitude above and below the diag- 
onal, indica ting sa tisfactory agreement with the proteomic 

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(circles) by ribosomes (light blue) according to the primary sequence of polypeptides (rectangles). With each elongation step, an amino acid (for example, 
threonine in pink) is directly incorporated (dashed circle) into the nascent polypeptide. Amino acids are labeled with their single-letter abbreviations. ( B ) 
Updated model (presented in the current study) expanded the translation model by r epr esenting the mechanisms of tRNA aminoacylation, codon-based 
polypeptide elongation, and N-terminal cleavage of initial methionines (Supporting Materials, Section 1). With each elongation step, an aminoacyl-tRNA 

(for example, a threonyl- thrT or threonyl- thrV tRNA in pink) interacts with the codon in the open A site (ACC) by Watson-Crick (such as the serine-cognate 
serV tRNA with anticodon 3’-UCG-5’ decoding codon 5’-AGC-3’) or Wobble base pairing (such as the l ysine-co gnate l ysY tRN A with anticodon 3’-UUU- 
5’ decoding codon 5’-AAG-3) to facilitate incorporation (dashed rectangle connected to a dashed circle) of the next residue (threonine). After interaction 
with the ribosome (light blue), tRNAs (curved-edge rectangles) are available for successi v e rounds of aminoacylation by aminoacyl-tRNA synthetase 
enzymes (labeled ‘E’). Nascent polypeptides that undergo N-terminal cleavage of the initial methionine by Methionine Aminopeptidase (labeled ‘MAP’) 
are cleaved before termination. Colors and sequences are coordinated between panels A and B to aid comparison. ( C ) Comparison of implementations of 
translation in the prior model (with unlimited tRNA aminoacylation) and updated model (presented in the current study) (Supporting Materials, Section 3). 
Notes: a: Interpolated from Bremer and Dennis, 2008 ( 19 ). b: Uses the primary sequence of mature proteins. c: Ribosomes process sequentially along the 
amino acid (prior model) or codon (updated model) sequence, such that the most limiting amino acid or codon determines the number of ribosome steps. 
In the prior model, no further steps are required. Howe v er, in the updated model, due to the cyclic relationship between tRNA aminoacylation and codon 
reading, any excess estimation of codon reading e v ents k i are incorporated back into the calculation of tRNA aminoacylation e v ents (from the mass action 
kinetics model) through the Reconciliation Program. d: The Reconciliation Program is detailed in Supplementary Figure S1 and Supporting Materials, 
Section 3.3. 
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Table 1. Functional r epr esenta tions introduced by the upda ted model. 
The functional r epr esentations of 22 synthetase subunits (forming 20 
aminoacyl-tRN A synthetase species), 85 tRN As (in their aminoacylated 
and unaminoacylated forms) for the 20 canonical amino acids, the 61 sense 
codons, and Methionine Aminopeptidase have been incorporated into the 
E. coli model ( 5 ) by this study 

Functional r epr esentations introduced 

Translation components 
Number of 
r epr esentations 

Number of 
genes 

Aminoacyl-tRNA synthetase 20 species 22 
tRNA 85 species 85 
Codons 61 sense codons N / A 

Methionine aminopeptidase 1 species 1 

measurements. Having verified the aver ag e abundance of 
the aminoacyl-tRNA synthetases with experimental mea- 
surements, we next sought to verify their distributions 
against a single-cell pr otein pr ofiling dataset with single- 
molecule sensitivity ( 17 ), which was also not used in the 
construction of the model. To be directly comparable with 

our faster growing cells (44 minutes doubling time, versus 
150 minutes in the dataset ( 17 )), we scaled up the reported 

gamma distribution by aligning the measured means to our 
simulated means while preserving the shape of the measured 

distributions (r epr esentati v es in Figure 2 F, full set in Sup- 
plementary Figure S2). For all 13 aminoacyl-tRNA syn- 
thetases in the measured da taset, their simula ted distribu- 
tions agreed well with corresponding measured distribu- 
tions. Notably, none of the aminoacyl-tRNA synthetases 
showed a broader distribution than their measured coun- 
terpart, indica ting tha t the simula ted number of aminoacyl- 
tRNA synthetases molecules were not ‘too low’ (which 

would be the direction of incompatibility that would lead to 

insuf ficient tRNA aminoacyla tion). Considering tha t sep- 
arate experimental measurements supported both the av- 
erages and distributions of aminoacyl-tRNA synthetases, 
we concluded that the measured k cat s must be the primary 

cause of insuf ficient tRNA aminoacyla tion ra tes tha t were 
unable to support maintenance of the cellular proteome, in 

agreement with Jakubowski and Goldman ( 3 ). 

Optimization of aminoacyl-tRNA synthetase kinetic parame- 
ters yields quantitative estimates of k cat s that adequately sup- 
port cell growth 

Having determined that the measured aminoacyl-tRNA 

synthetase k cat s are primarily responsible for insufficient 
pr otein pr oduction, we sought to calcula te k cat values tha t 
would support the cell’s demand for protein synthesis. We 
de v eloped a parameter optimization strategy that treated 

the kinetics of each aminoacyl-tRNA synthetase as an 

independent optimization problem that aimed to mini- 
mize differences between the rates of tRNA aminoacyla- 
tion and aminoacyl-tRNA utiliza tion –– a t both the aver- 
age and minimum intracellular abundances of aminoacyl- 
tRN A synthetases –– w hile holding to the principle that the 
protein content of the cell must grow exponentially and 

double at roughly the measured doubling time (Figure 3 A). 
The average and minimum concentrations of aminoacyl- 
tRNA synthetases were estimated from sample simulations 

pr oduced fr om our prior model (with unlimited tRNA 

aminoacylation) ( 5 ). During optimization, the estimated 

aver age aminoacyl-tRNA synthetase concentr ations were 
held fixed, while the minimum concentrations –– due to their 
variable nature between cells –– were allowed to range be- 
tween the estimated minimum and 0 �M (which is the 
lowest feasible value) in a 4-value parameter sweep (Sup- 
plementary Figure S3) (described more fully in Support- 
ing Materials, Section 2). For each aminoacyl-tRNA syn- 
thetase, this process produced a range of k cat solutions, of 
which the candidate k cat corresponding to the minimum ob- 
jecti v e value was identified as the best solution (reported in 

Supplementary Table S2 and compared to the average mea- 
sured k cat in Supplementary Table S3) and used for the re- 
mainder of this study. 

Next, we wanted to assess the impact of the optimized 

k cat s in the virtual in vivo context of our simulations. We 
ther efor e r eplaced the measur ed k cat s with their optimized 

counterparts, r elax ed our assumptions about sa tura tion in 

amino acids and tRNAs shown in Figure 2 D (the sa tura tion 

assumption for ATP was left intact), and performed 150 

simulations of 10-generation long lineages (initialized at 15 

random seeds) r epr esenting aer obic gr owth in M9 Minimal 
Media supplemented with 0.4% glucose at 37 

◦C. In contrast 
to our previous simulations, the average doubling time was 
found to be to 44.4 min (two-tailed P -value = 0.90, z -score 
= 0.12) and the population distribution (standard deviation 

of 3.6 min) returned to le v els observ ed from the prior model 
(standar d de viation of 4.3 min) (Figure 3 B). 

We also sought to compare the resulting simulation 

output to our prior model –– in particular, as related to 

translation. Considering our set of 150 simulations fur- 
ther, we compared outputs with the prior model outputs 
at the tRNA, amino acid and protein le v els (Figure 3 C). 
Our comparison identified se v eral improv ements in simu- 
lation output. First, the prior model was unable to rep- 
resent tRNA aminoacylation rates, aminoacylated frac- 
tion, rates of interactions between aminoacyl-tRNAs and 

codons (e.g. alanyl- alaT tRNA interacts with two codons: 
GCA and GCG), and N-terminal methionine cleavage rates 
of nascent polypeptides. Second, r epr esenting the tRNA 

aminoacylation reactions explicitly enabled the allocation 

of tRNAs into aminoacylated and unaminoacylated forms, 
in contrast to the prior model, w hich onl y r epr esented the 
unaminoacylated form. Finally, the inclusion of codon- 
based polypeptide elongation facilitated the observation of 
the codon reading rate (in contrast to the amino acid read- 
ing rate, as r epr esented in the prior model). 

Our new simulation outputs were also consistent with the 
e xperimental validation benchmar ks –– the molecular count 
of each protein (Figure 3 D) and the fluxes through reac- 
tions in central carbon metabolism (Figure 3 E) –– that we 
used in our prior model. We also found that the simulated 

tRNA abundances, both the isoacceptor-specific concen- 
trations (Figure 3 F) and the total number of all tRNAs 
(Figur e 3 G), r ecapitula ted their estima tes taken from Dong 

and colleagues ( 18 ) and Bremer and Dennis ( 19 ), which 

wer e r especti v ely used as model inputs. The model improve- 
ments also enabled us to compare across tRNA species with 

gr eater detail r egarding their forms (aminoacylated or not), 
isoacceptor group, and the full range of their intracellular 
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Figure 2. Deep curation confirms and quantifies the insufficiency of aminoacyl-tRNA synthetase kinetic measurements for maintenance of the cellular 
proteome. ( A ) Distribution of doubling times of cells simulated in the prior model ( n = 100 cells, gray) and in the updated model when using the mea- 
sured aminoacyl-tRNA synthetase k cat s (n = 100 cells, blue) –– compared to the experimentally measured doubling time (black). ( B ) Mass accumulation of 
total dry cell (gray), protein (blue), and non-protein (yellow) in a r epr esentati v e cell simulated in the updated model with the measured aminoacyl-tRNA 

synthetase k cat s. The r epr esentati v e cell (Variant 2, Seed 11, Generation 0) was chosen for exhibiting a doubling time that is closest to the population 
average. Black dashed line r epr esents the expectation of mass doubling during exponential growth. ( C ) Distribution of mass fold changes of total dry 
cell (gray), protein (blue), and non-protein (yellow) in cells simulated in the updated model with the measured aminoacyl-tRNA synthetase k cat s ( n = 

100 cells). Error bars indicate the range of observed values. Black dashed line r epr esents the expectation of mass doubling during exponential growth. 
( D ) Rate of tRNA aminoacylation described by Michaelis–Menten enzyme kinetics r epr esenting random-order ed substrate-binding and competition be- 
tween tRNA isoacceptors for the aminoacyl-tRNA synthetase. Maximal rates were assumed by setting the fractional components to 1. Notations are: 
[ E ] = aminoacyl-tRNA synthetase concentration, [ A ] = amino acid concentration, [ T i ] = i th tRNA isoacceptor (unaminoacyla ted form), [ A TP ] = ATP 

concentr ation, k cat = r ate of catalysis, K M,A 

= Michaelis–Menten constant describing the affinity between amino acids and aminoacyl-tRNA synthetase, 
K M,T,i = Michaelis–Menten constant describing the affinity between unaminoacylated tRNAs and aminoacyl-tRNA synthetase, n = number of tRNA 

isoacceptors. ( E ) Correlation of proteome abundance between the measurement ( 16 ) and simulation using the prior model ( n = 100 cells). Each protein is 
r epr esented by a gray dot. Aminoacyl-tRNA synthetases are highlighted with blue circles. Solid black diagonal r epr esents the y = x line, and the dashed 
black lines indicate one order of magnitude above and below the diagonal. ( F ) Comparison of distribution of protein abundance for three representati v e 
aminoacyl-tRNA synthetases –– CysRS (left), AlaRS (middle), and ThrRS (right) –– shown as probability densities. Simulated abundances are from the 
prior model ( n = 100 cells, blue) and the measured distributions were scaled from ( 17 ) (yellow). Full set of comparisons is shown in Supplementary Figure 
S2. All cells were simulated in aerobic growth in M9 Minimal Media supplemented with 0.4% glucose at 37 ◦C. Simulations of the prior model r epr esent 
10-generation long lineages initialized at 10 random seeds (total of n = 100 cells). Simulations in the updated model using the measured aminoacyl-tRNA 

synthetase k cat s r epr esent 2-generation long lineages initialized at 50 random seeds (total of n = 100 cells). Descriptions of the analyses performed in this 
figure can be found in Supporting Materials, Section 4. 

abundance (Supplementary Figure S4A). This enabled us 
to compare simulations to a further class of datasets that 
was not used to parameterize the model: aminoacylated per- 
centage (Supplementary Figure S4B). Four published stud- 
ies were compared in total; these studies did not uniformly 

agree with each other (possibly due to variation in strains 
or experimental conditions), which pr ecludes agr eement be- 
tween the model and the entirety of the da ta. Tha t said, we 
observed good agreement with two different studies includ- 

ing Sørensen, in which the charged fraction of argV , leuP , 
leuQ , leuT , leuV , and thrV in particular matched well with 

simulations, as did the range of values suggested for hisR 

( 20 ); and Kruger et al. , in which g lnU , g lnW , g ltT , g ltU , 
g ltV , g ltW are inside the sim ulated ranges, and l ysine tR- 
NAs’ aminoacylated percentage measurements overlapped 

with the upper simulated end ( 21 ). A third study ( 22 ) exhib- 
ited agreement with some of our predictions and not others, 
but also differed from the other studies in two significant 
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ways: (i) overall the aminoacylated percentages measured 

tended to be lower than those measured in any other study, 
often by a substantial amount; and (ii) in some cases the dis- 
tributions for the aminoacylated percentages ranged higher 
than 100%, which our model is unable to simulate. The last 
study ( 23 ) was also mixed, with aminoacylated percentages 
for all tRNAs in the alanine , arginine , glycine , histidine , pro- 
line, threonine and tyrosine amino acid families predicted 

well, for aspartate, isoleucine, and serine not predicted well, 
and for the r est somewher e in between. In sum, we found 

that our simulation predictions agreed with at least one of 
these datasets in most cases, and that our calculated aver- 
age aminoacylated percentage of 78.8% for tRNAs over- 
all agrees well with all other studies except for the third 

mentioned. As a result, we concluded that the optimized 

aminoacyl-tRNA synthetase k cat s were able to produce sim- 
ulation outputs that recapitulated typical cell growth. 

Equipped with the kinetics-optimized tRNA aminoacy- 
lation model that was compatible with the in vivo context 
r epr esented by our simulations, we were able to further 
pursue the questions raised by the inconsistency between 

in vitro measurements and in vivo estimates of aminoacyl- 
tRNA synthetase activities ( 3 ). Jakubowski and Goldman 

presented their k cat estimates as lower limits, and so for their 
hypothesis to be correct, our estimates would have to be 
equal or higher –– not only than their values, but also than 

most or all of the experimental measurements. To test this 
assertion, we compared our estimated k cat s to the curated 

experimental data and Jakubowski and Goldman estimates 
(Figure 3 H). For the 10 aminoacyl-tRNA synthetase en- 
zymes Jakubowski and Goldman estimated, our k cat esti- 
mates (median of 174 s –1 , blue cir cles) wer e on average 9.4- 
fold (median) higher than their estimates of the lower limit 

of in vivo activity (median of 13.6 s –1 , gray circles). We also 

noted that many of the in vitro measur ements r eferr ed to 

by Jakubowski and Goldman (black lines) fall in the lower 
range of total curated measurements (gray bars) –– and are 
the absolute minimum measurements reported for IleRS, 
LeuRS, ArgRS and GlnRS –– suggesting that the measure- 
ments that have been reported since the 1980s may be higher 
than older measurements. Taken together, these observa- 
tions support Jakubowski and Goldman’s assertion that 
their estimates were indeed lower limits of k cat s. 

We also compared our own estimates to the in vitro mea- 
surements from our curation, and found that our k cat es- 
timations were on average 7.6-fold higher (median) than 

the highest measurements. Ranking the degree of agreement 
between our k cat estimations (Figure 3 H) with either the 
highest measurement from our curation or the lower limit 
of in vivo activity estimated by Jakubowski and Goldman 

re v ealed that 12 of the aminoacyl-tRNA synthetases fall 
within one order of magnitude of these benchmarks, indi- 
cating fair agreement for these enzymes; the remaining eight 
aminoacyl-tRNA synthetases fell within two orders of mag- 
nitude. We chose two r epr esentati v e synthetases (HisRS and 

ArgRS, highlighted in green) to examine more closely as 
part of this overall study; the details can be found below. 

Higher, optimized k cat values confer robustness in ribosome 
elongation rate to variability in aminoacyl-tRNA synthetase 
availability 

Pairing two of our previous findings –– first, that the opti- 
mized k cat s we calculated were on average 7.6-fold higher 
than the greatest measurements (Figure 3 H), and sec- 
ond, that the intracellular abundance of aminoacyl-tRNA 

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
errors (first line), regularization of kinetic parameters (first summation on the second line), and bounds penalties for aminoacylation le v els that are too 
close to either extreme –– 0 or 1 (second summation on the second line). Each aminoacyl-tRNA synthetase was treated as an independent optimization 
problem. Notations are: v A,avg, ij = rate of aminoacylation of i th tRNA isoacceptor at average aminoacyl-tRNA synthetase concentrations, v A,min, ij = 

rate of aminoacylation of i th tRNA isoacceptor at minimum aminoacyl-tRNA synthetase concentrations, v D, ij = rate of amino acid transfer and release 
of i th tRNA isoacceptor, K T ,i = Michaelis–Menten constant describing the affinity between the unaminoacylated form of the i th tRNA isoacceptor 
and the aminoacyl-tRNA synthetase, f avg, i = fraction of i th tRNA isoacceptor in the unaminoacylated form at average aminoacyl-tRNA synthetase 
concentr ations, f min, i = fr action of i th tRNA isoacceptor in the unaminoacylated form at minim um aminoacyl-tRN A synthetase concentrations, n = 

number of tRNA isoacceptors, c = number of growth conditions, w r = weight of regularization term, w b = weight of bounds penalty. Description of the 
parameter optimization approach can be found in Supporting Materials, Section 2. ( B ) Distribution of doubling times of cells simulated in the prior model ( n 
= 100 cells, gray) and in the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters ( n = 150 cells, blue) –– compared to the 
experimentally measured doubling time (black). ( C ) Comparison of translation dynamics between the prior model ( n = 100 cells) and updated model when 
using the optimized aminoacyl-tRNA synthetase kinetic parameters (n = 150 cells) during the cell cycle for alanine. Aminoacyla tion ra te, aminoacyla ted 
fr action, r ate of tRNA-codon interaction, and N-terminal initial methionine cleavage are new r epr esentations introduced by the current study. The cellular 
abundance of tRNAs have been divided into aminoacylated and unaminoacylated fractions in the updated model. The direct polymerization of alanine 
in the previous model has been replaced with codon-based polypeptide elongation (the four codons of alanine: GCU, GCG, GCA and GCC). Solid lines 
r epr esent mean behavior and shaded regions indicate one standard deviation above and below the mean. ( D ) Correlation of average protein abundance 
between the prior model and the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters. Each protein ( n = 4307 total) 
is r epr esented by a gray dot. ( E ) Correlation of average flux through central carbon metabolism between the prior model and the updated model when 
using the optimized aminoacyl-tRNA synthetase kinetic parameters. Each reaction ( n = 23 total) is r epr esented by a gray dot. ( F ) Correlation between 
the simulated (in the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters) and measured (as reported by Dong 
and colleagues ( 18 )) average concentrations of tRNA isoacceptors. Each tRNA isoacceptor is r epr esented by a gray dot; the mapping between tRNA 

isoacceptors reported by Dong and colleagues and our simulations is reported in Supporting Materials, Section 4.2.2. ( G ) Distribution of the total number 
of simulated tRNA molecules per cell in blue (in the updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters) compared 
to a report by Bremer and Dennis ( 19 ) in gray. (H) Comparison of the ranges of aminoacyl-tRNA synthetase acti vities observ ed from measurements (gray) 
and from the parameter optimization (blue). The estimations of the lower limit of aminoacyl-tRNA synthetase activities by Jakubowski and Goldman (gray 
triangles) and the particular measurements their study compared to (black lines) are also indicated ( 3 ). For each aminoacyl-tRNA synthetase optimization 
problem, the best solution (blue circle) was used for the remainder of this study. HisRS and ArgRS (green boxes) are investigated further in this study. 
Aminoacyl-tRNA synthetases are ranked by their degree of agreement between the optimized and measured activities. All cells were simulated in aerobic 
growth in M9 Minimal Media supplemented with 0.4% glucose a t 37 ◦C . All simula tions in this figure represent 10-generation long lineages initialized at 
10 (prior model, total of n = 100 cells) or 15 (updated model when using the optimized aminoacyl-tRNA synthetase kinetic parameters, total of n = 150 
cells) random seeds. Descriptions of the analyses performed in this figure can be found in Supporting Materials, Section 4. 
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synthetases can be quite variable (Figure 2 F and Supple- 
mentary Figure S2) –– we hypothesized that the calculations 
made by Jakubowski and Goldman may have been im- 
pacted by their reliance on an average aminoacyl-tRNA 

synthetase concentration rather than the entire range of en- 
zyme concentrations experienced by the cell. In this con- 
text, we note two orthogonal factors that can limit protein 

production. First, the expression of synthetase enzymes is 
known to be a noisy and stochastic process ( 17 ) and can lead 

to variable enzyme counts that rise and fall, sometimes dra- 
matically, over the course of a cell cycle. Second, the elonga- 
tion rate of a ribosome on mRNA is thought to have a phys- 
ical upper limit e v en when r esour ces ar e abundant. Taken 

together, these characteristics suggest that if the aminoacyl- 
tRNA synthetase k cat is not sufficiently high, and the cor- 
responding enzyme counts are lower than the average, then 

the cell could enter a period of lower protein production. 
The impact of this lower protein production could be mit- 
igated by a period of higher production at a different time 
as long as the physical limit on ribosome procession is not 
surpassed. Thus, we hypothesized that a higher k cat confers 
robustness to variability in aminoacyl-tRNA synthetase en- 
zyme expression. 

To test this hypothesis, we focused on histidine and per- 
formed simulations to determine whether the full range 
of possible HisRS concentrations can adequately support 
cell growth when the k cat corresponds to measured val- 
ues. HisRS was chosen for having an estimated k cat that 
showed relati v ely fair agreement with the highest measure- 
ment (ranked fifth for agreement in Figure 3 H), and for 
being a relati v ely simple system, aminoacylating a single 
tRNA isoacceptor that reads two codons. We therefore re- 
duced the HisRS k cat 2.7-fold from its optimized value 
(386 s –1 ) to the highest measured value (142 s –1 ) while all 
other parameters were held constant, and performed 150 

simulations (of 10-generation long lineages initialized at 15 

random seeds). We found that overall, simulating with the 
measured HisRS k cat led to a slightly increased average dou- 
bling time (mean = 50.9 min, standard deviation = 6.1 min) 
compared to simulations using the optimized k cat (mean = 

44.4 minutes, standard deviation = 3.6 min) (Figure 4 A). 
Despite the broader distribution, we also observed the pres- 
ence of a rare (1 out of 150) slo wer-gro wing cell with a 

doubling time that exceeded three standard deviations be- 
yond the mean (where the empirical rule of statistics re- 
gards three standard deviations to account for 99.7% of 
the data in a normal distribution). It ther efor e seemed that 
the relati v ely modest decrease in HisRS k cat (compared to 

other aminoacyl-tRN A synthetases) generall y led to slowed 

growth, but could also lead to rare instances of extremely 

slo wed gro wth. 
To determine whether the rare slo wer-gro wing cell was 

simply a statistical anomaly, or more importantly whether 
the reduced k cat was impacting our simulations, we exam- 
ined the specific lineage that produced the top outlier –– a 

cell that took 71.1 minutes to complete its cell cycle (Fig- 
ure 4 B–E). In the context of its 10-generation long lin- 
eage, the outlier cell occurred in Generation 9 and was pre- 
ceded by mother cells with increasingly lengthening dou- 
bling times (Figure 4 B) relati v e to the population average 
of 50.9 min (Figure 4 A). We thus determined that the lin- 

eage experienced disruptions to typical growth, particularly 

during Generations 5, 7, 8 and 9 (which are all members of 
the top 10 outliers identified in Figure 4 A), that required 

further examination. 
Following our overall hypothesis as described above, we 

specula ted tha t the transla tion machinery and its r esour ces 
might be associated with the disruptions to typical growth. 
To investigate the productivity of the translation machin- 
ery, we examined the ribosome elonga tion ra te (Figure 4 C), 
the aminoacylation rate of hisR tRNA (Figure 4 D), and the 
abundance of HisRS (Figure 4 E), all in the same lineage. 
While ribosome elongation began at a stable rate of 17.5 

amino acids per second, it also deviated by more than 40% 

during Generations 5 through 9 (highlighted in green), and 

reached a minimum of 9.1 amino acids per second in Gener- 
ation 8 (Figure 4 C). During the same window of time (high- 
lighted in green), hisR tRNA aminoacylation was nearly 

halved from an average starting rate of 7.6 �M / s to a min- 
imum of 4.2 �M / s a t Genera tion 7 and reached a compa- 
rably low value of 4.3 �M / s a t Genera tion 8 (Figure 4 D). 
Similar ly, HisRS concentr ation visited the lowest 23.5% of 
its dynamic range (0.26–0.33 �M) during this time, with the 
minimum occurring in Generation 8 at 478 min (Figure 4 E). 
The coordinated quality of these disruptions throughout 
the translation machinery suggested a propagation of inad- 
equate capacity to charge hisR tRNAs with histidines, and 

that this insufficiency was originating from HisRS visiting 

the lower extreme of its dynamic range. 
We ne xt e xamined the correlation between HisRS con- 

centrations and ribosome elongation rates during each time 
step of all simulated cells (Figure 4 F). Whereas the opti- 
mized HisRS k cat simula tions demonstra ted stable ra tes of 
ribosome elongation, independent of HisRS concentration, 
the measured HisRS k cat led to a dramatic drop in the ribo- 
some elongation rate for HisRS concentrations below 0.59 

�M, reaching the previously observed (Figure 4 C) mini- 
mum of 9.1 amino acids per second per ribosome. This re- 
gion of tRNA aminoacylation limitation (taken to be when 

the ribosome elongation rate was less than 17.3 amino acids 
per second per ribosome, which is the minimum observed 

in the optimized simulations) accounted for 91.1% of the 
time steps. These trends suggested two predominant charac- 
teristics of the relationship between aminoacyl-tRNA syn- 
thetase concentrations and ribosome elongation rates: the 
previously described physical upper limit on the procession 

of ribosomes (as informed by the availability of cellular re- 
sources in the particular growth condition) and a sensitiv- 
ity threshold at low aminoacyl-tRNA synthetase concentra- 
tions in the measured k cat case at which the system switches 
from maximum to lower elongation rates. 

In considering how to ensure that the average ribosome 
elonga tion ra te is maintained across the entire d ynamic 
range of aminoacyl-tRNA synthetases, we identified two 

potential approaches, both of which are illustrated schemat- 
ically in Figure 4 G. One approach would be to scale the en- 
tir e r elationship curve between the ribosome elonga tion ra te 
and aminoacyl-tRNA synthetase concentration upwards, 
including –– and most importantly –– the maximum elonga- 
tion rate (Figure 4 G, left panel). We recognized that this 
approach would compromise the physical upper limit of ri- 
bosome procession, which is thought to be well-established 
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Figure 4. Higher, optimized k cat values confer robustness in ribosome elongation rate to variability in aminoacyl-tRNA synthetase availability. ( A ) Dis- 
tribution of doubling times (rounded to the nearest minute) of cells simulated in the updated model when using the optimized ( n = 150 cells, gray) and 
measured ( n = 150 cells, blue) HisRS k cat s. The mean ( �) and 3 standar d de viations away from the mean ( � ± 3 �) are indicated by the horizontal lines. 
( B ) Doubling times of each cell in the 10-generation lineage that includes the cell with the longest doubling time (Variant 3, Seed 12, Generation 9) in the 
updated model when using the measured HisRS k cat in panel A. Doubling times are shown relati v e to the average of all simulations with the measured 
HisRS k cat ( n = 150 cells). The top four longest doubling times in this lineage, which are also within the top 10 outliers identified in panel A, are highlighted 
in green. ( C ) Ribosome elongation rate, ( D ) hisR tRNA aminoacylation rate, and ( E ) HisRS concentration during the same 10-generation lineage as panel 
B. Regions highlighted in green indicate times when the ribosome elonga tion ra te devia ted by more than 40% from the expected value for the simulated 
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( 19 ), and that obeying the physical upper limit would make 
it difficult for the average ribosome elongation rate to 

‘catch up’ after experiencing a significant decrease. The sec- 
ond approach would be to raise the k cat (Figure 4 G, right 
panel) –– which is the sole term in Figure 2 D that can coun- 
teract low aminoacyl-tRNA synthetase concentrations, [ E ]. 
We anticipa ted tha t this approach would decrease the sen- 
sitivity threshold so that the entire dynamic range of the 
aminoacyl-tRNA synthetase can be supported by the k cat 
(Figure 4 G, right panel). 

To test this hypothesis, we performed a parametric 
sweep on the HisRS k cat between the experimentally 

measured (142 s –1 ) and our optimized (386 s –1 ) values, 
and performed 100 simulations (of 10-generation long 

lineages initialized at 10 random seeds) at each new 

sweep value (Figure 4 H and I). As the k cat increased, 
the sensitivity threshold gradually decreased from 0.57 

�M (measured k cat ), to 0.45 �M ( k cat = 183 s –1 ), to 

0.35 �M ( k cat = 223 s –1 ) to nonexistent at the optimized 

k cat . Sim ultaneousl y, the minim um ribosome elongation 

rate increased from 9.1 to 17.3 amino acids per second 

per ribosome and the portion of time spent with tRNA 

aminoacyla tion limita tion decreased from 91.1% to 0%. 
We thus concluded that the higher, optimized k cat confers 
robustness of ribosome elongation rate –– and correspond- 
ingly, to normal cellular physiology and growth –– with 

respect to variability in aminoacyl-tRNA synthetase 
expression. 

Insufficient ArgRS kinetic capacity leads to catastrophic im- 
pacts on cellular phenotype via arginine biosynthesis due to 

abrogated expression of ArgA 

Having considered the measured k cat in the case of HisRS, 
we next performed a similar analysis with a more com- 
plicated synthetase example, ArgRS, which aminoacylates 
se v en tRNA isoacceptors that collecti v ely read six codons. 
We reduced the ArgRS k cat 8.1-fold from its optimized 

value (210 s –1 ) to the highest measured value (26 s2 

–1 ) while 
all other parameters were held constant, and attempted 

to perform 10 lineage simulations, each of which were 20- 
generations long. We found that 7 of them encountered pre- 
ma turely termina ted cell cycles before all genera tions were 
simulated, resulting in fewer viable simulations as the gener- 
ation number incr eased (Figur e 5 A, top). Even in the viable 

simulations, the lower (measured) ArgRS k cat led to a nearly 

2-fold increase in doubling time in the first generation com- 
pared to simulations performed using the optimized ArgRS 

k cat (Figure 5 A, bottom). The doubling time continued to 

increase in subsequent generations until our three hour dou- 
bling time limit was reached. Thus, using the measured Ar- 
gRS k cat was more detrimental to cell growth than using the 
measured HisRS k cat . 

To investigate the cause of the increased doubling times, 
which suggested a slowed accumulation of cellular mate- 
rial, we examined the production of cell mass at the DNA, 
RNA, and protein le v els in a single lineage from our simu- 
lation set (Figure 5 B). Although we anticipated (and saw) 
a slight reduction in protein production (compared to the 
optimized ArgRS k cat case) and an increase in RNA pro- 
duction (consistent with Figure 2 B and C) starting at Gen- 
eration 0, we were surprised to see a complete absence of 
protein accumulation starting at Generation 9, followed by 

cessa tion of DNA (Genera tion 11) and RNA (Genera tion 

12) accumulation as well. Once production had stopped, 
the mass of these cellular components halved at each sub- 
sequent cell division event, as would be expected. To de- 
termine whether our observations in this single simulation 

extended to the entire set of simula tions, we calcula ted the 
fold change in cell mass as a function of the cell cycle num- 
ber (Figure 5 C). While the optimized ArgRS k cat simula- 
tions exhibited a two-fold increase in all major cellular com- 
ponents, the measured ArgRS k cat simulations re v ealed a 

consistent trend of lineages that were unable to accumu- 
late protein mass starting at Generation 10, then DNA at 
Generation 12, and then RNA at Generation 14 (green 

bars). 
Since the factor(s) limiting protein production at, for 

most lineages, Generation 10 may have been related to an 

insufficient supply of aminoacyl-tRNAs, it seemed that the 
translation machinery r equir ed further attention. To assess 
w hether aminoacyl-tRN As were limiting the production of 
protein, we considered the distribution of aminoacylated 

fractions of tRNAs grouped by amino acid family for all 
lineages up to the generation when protein mass accumula- 
tion halts (Figure 5 D). For almost all of the amino acid fam- 
ilies, the average aminoacylated percent varied from 91.3% 

(histidyl-tRNAs) to 97.8% (methionyl-tRNAs). In contrast, 
arginine tRNAs showed a much lower average aminoacyla- 
tion at 5.1%, strongly suggesting that low aminoacylation 

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
growth condition (17.5 amino acids per second per ribosome). Vertical dashed lines indicate cell division events. ( F ) Comparison of the relationship between 
the ribosome elonga tion ra te and HisRS concentration from simulations in the updated model when using the optimized ( n = 150 cells, gray) and with the 
measured ( n = 150 cells, blue) HisRS k cat s. In the scatter plot, each time step is r epr esented by a dot. The top histogram shows the distribution of HisRS 
concentrations. The right histogram shows the distribution of ribosome elongation ra tes. ( G ) Schema tic of the two approaches for recovering the average 
ribosome elongation rate: scaling the relationship upwards (left) or raising the k cat (right). The anticipated relationship between ribosome elongation rate 
and aminoacyl-tRNA synthetase is depicted in blue. The physical upper limit of ribosome procession gi v en the growth condition is depicted in yellow, 
and the anticipated change in sensitivity threshold is indicated in green. ( H ) Comparison of the relationship between ribosome elongation rate and HisRS 
concentra tion from simula tions in the upda ted model when using the optimized HisRS k cat = 386 s –1 ( n = 150 cell, gray), k cat = 223 s –1 ( n = 100 cells, 
yellow), k cat = 183 s –1 ( n = 100 cells, green), and the measured HisRS k cat = 142 s –1 ( n = 150 cells, blue). In the scatter plot, each time step is r epr esented 
by a dot. The top histogram shows the distribution of HisRS concentrations. The right histogram shows the distribution of ribosome elongation rates. ( I ) 
Table of characteristics of HisRS k cat parametric sweep performed in panel H. (a) The portion of time with tRNA aminoacylation limitation was calculated 
as the portion of time steps displaying a ribosome elonga tion ra te tha t was less than the minimum observed ribosome elonga tion ra te in the simulations 
performed in the Updated Model when using the optimized aminoacyl-tRNA synthetase kinetic parameters (gray). All cells were simulated in aerobic 
growth in M9 Minimal Media supplemented with 0.4% glucose a t 37 ◦C . All simulations in this figure represent 10-generation long lineages initialized at 15 
(when using the optimized and measured HisRS k cat , total of n = 150 cells each) or 10 (when using the intermediate HisRS k cat values 223 s –1 and 183 s –1 , 
total of 100 cells each) random seeds in the updated model. Descriptions of the analyses performed in this figure can be found in Supporting Materials, 
Section 4. 
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Figure 5. Insufficient ArgRS kinetic capacity leads to catastrophic impacts on cellular phenotype via arginine biosynthesis due to abrogated expression 
of ArgA. ( A ) Number of viable simulations (top) and doubling times (bottom) at each generation. Doubling times of cells simulated in the updated model 
when using the measured ArgRS k cat are shown in blue and compared to the population average when using the optimized k cat in gray ( n = 150 cells). 
Error bars indicate the interquartile range. ( B ) Mass of DN A, RN A, protein and total dry cell mass in a r epr esentati v e 20-generation lineage simulated 
in the updated model when using the measured ArgRS k cat (Variant 4, Seed 8) are shown in blue and compared to a r epr esentati v e cell simulated using 
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of arginine tRNAs was the consistent failure mode of using 

the measured ArgRS k cat . 
This was a surprise: although decreasing the ArgRS k cat 

from its optimized to measured value was the original per- 
turbation responsible for the reduced aminoacylation of 
arginine tRNAs, the model k cat was held at a constant value 
for each simulation after being set. This means that the k cat 
value, although low in these simulations, cannot directly ex- 
plain the sudden halt of protein accumulation in Generation 

10 (Figure 5 C). To unearth the mechanism of this cessation, 
we examined other potential causati v e factors, beginning 

with the four main concentration variables in our aminoa- 
cyla tion ra te equa tion (Figure 2 D): Ar gRS, ar ginine, un- 
aminoacylated arginine tRNAs, and ATP. We compared the 
concentrations of these four molecules immediately preced- 
ing and following the cell cycle division event when pro- 
tein mass accumulation halts (Figure 5 E). We observed that 
the log 2 ratios of cellular abundance pre- and post-cessation 

of protein mass accumulation for Ar gRS, ar ginine tRNAs 
and ATP were all close to zero, and agreed with simulations 
performed using the optimized ArgRS k cat . In contrast, the 
pool of free arginine showed a 16.2-fold decrease in cellular 
abundance (two-tailed P -value < 1 × 10 

−6 calculated from 

the z-score for the optimized ArgRS k cat average = 81.5). 
These results indicated that the ArgRS k cat ’s impact on pro- 
tein synthesis was in fact not due directly to translation, but 
instead related to a previously unknown connection to argi- 
nine metabolism. 

Thus, to investigate the decreased cellular abundance of 
arginine, we first examined the arginine biosynthesis path- 

wa y f or enzyme and small molecule concentrations as well 
as metabolic fluxes (Figure 5 F) for the same lineage as Fig- 
ure 5 B. Consistent with the previously observed cessation in 

protein mass accumulation in Figure 5 B, arginine depletion 

began a t Genera tion 9 and continued to the start of Gen- 
eration 14 (highlighted by the yellow line above the trace 
in all subplots of Figure 5 F). In contrast, glutamate did 

not exhibit a change during the arginine depletion period, 
suggesting that the cause of arginine depletion was down- 
stream of glutamate. Indeed, we saw that the N-acetyl trans- 
fer reaction that consumes glutamate showed a sudden de- 
crease a t Genera tion 9 (indica ted by the red line on this and 

subsequent panels) corresponding to the start of arginine 
depletion. Consequently, citrulline, a downstream metabo- 
lite, exhibited a depletion period also beginning at Gener- 
ation 9 and continuing through the rest of the simulation. 
Since the flux through the N -acetyl transfer reaction is im- 
pacted by the abundance of the N -acetylglutamate synthase 
(ArgA) enzyme, we examined the cellular abundance of N - 
acetylglutamate synthase and observed a gradual depletion 

from 0.11 �M at the start of the simulation to 0 �M at Gen- 
eration 9, after which it remained absent from the lineage 
for se v er al gener a tions. (We note tha t the recovery of argi- 
nine a t Genera tion 14 is caused by the ribosome elongation 

rate decreasing to zero, which causes amino acids that had 

experienced depletions to begin re-accumulating.) 
The impact of the ArgRS k cat on the expression of 

ArgA was a further surprise, and begged the ques- 
tion: how often is ArgA being expressed in the reduced 

ArgRS k cat simula tions? We investiga ted the synthesis, 

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
the optimized k cat (Variant 0, Seed 8, Generation 0) in gray. Green highlights indicate cell cycles when cessation of mass accumulation occurred. Vertical 
dashed lines indicate cell division events. Values across the top indicate the generation number. ( C ) Accumulation of DNA, RNA and protein mass during 
each cell cycle. The fold change in mass (calculated as the final mass divided by the initial mass of each cell cycle) in the updated model when using the 
measured ArgRS k cat is shown in blue and compared to the population average using the optimized k cat in gray ( n = 150 cells). Error bars indicate the 
inter quartile range. Gr een highlights indicate cell cycles when cessation of mass accumulation occurred. Horizontal dashed lines r epr esent the expectation 
of mass doubling at each cell cycle when experiencing exponential growth. ( D ) Distribution of tRNA aminoacylated percent prior to cessation of protein 
mass accumulation for each amino acid family in simulations in the updated model when using the measured ArgRS k cat ( n = 106 cells). Error bars indicate 
the full range of observed values. ( E ) Similarity of the intracellular abundances of ArgRS, arginine, unaminoacylated arginine tRNAs, and ATP to previous 
cell cycles in simulations in the updated model when using the optimized (labeled ‘O’, gray) and measured (labeled ‘M’, blue) ArgRS k cat s. Fold change was 
calculated by dividing the mean concentration of a gi v en cell cycle by the mean concentration of the previous cell cycle. For simulations using the measured 
ArgRS k cat , only cell cycles immediately preceding and following di vision e v ents e xhibiting the cessation of protein mass accumulation were included in 
this analysis ( n = 20 cells). For simulations using the optimized ArgRS k cat , which exhibited no protein cessation events, all cell cycles were included ( n = 

150 cells). Error bars indicate one standard deviation above and below the mean. ( F ) Characteristics of key small molecules , enzymes , and reaction fluxes 
in the arginine biosynthesis pathway in simulations in the updated model when using the optimized (gray) and measured (blue) ArgRS k cat s in the same 
lineage as panel B. For simulations using the measured ArgRS k cat , blue lines r epr esent the moving average calculated using a window size of 10 min. For 
simulations using the optimized ArgRS k cat , gray lines r epr esent the median value calculated from all 10 generations of the lineage (Variant 0, Seed 8). On 
all subplots, the period of arginine depletion is indicated by the yellow line, and the period of absence of the N -acetyl transfer reaction is indicated by the 
red line. The solid arrow indica tes tha t glutama te is directly consumed by the N -acetyl transfer reaction, while the dashed arrows indicate the existence 
of intermediary reactions that are not shown. ( G ) Synthesis, degrada tion, complexa tion, and hexamer abundance of ArgA in simulations in the updated 
model when using the optimized (gray) and measured (blue) ArgRS k cat s in the same lineage as panel B. Monomer synthesis, monomer degradation, and 
complexation are shown as the number of events per (2-s) time step. Monomer and hexamer abundances are shown as the number of molecules at each 
time step. The period of ArgA hexamer absence is indicated by the red line. Vertical dashed lines indicate cell division events. Values across the top indicate 
the generation number. ( H ) Simulated ribosome profiling experiment of codon identities observed on open A sites of ribosomes on argA mRNAs in the 
updated model when using the optimized (n = 150 cells, left) and measured ( n = 171 cells, right) ArgRS k cat s. The codon sequence of argA is numbered from 

0 (start codon) to 442 (the final sense codon). Colors indicate arginine codons (CGU in blue, CGG in green, CGC in yellow, and AGG in pink) and gray 
indicates non-arginine codons. Visualizations above and below summarize the fractions of all ribosome observations that were located on arginine (top) 
and non-arginine (bottom) codons. ( I ) Fraction of ribosomes initiated on argA mRNAs that were terminated pr ematur ely in the updated model when using 
the optimized ( n = 150 cells, top) and measured ( n = 171 cells, bottom) ArgRS k cat s. Outer ring compares the percentage of ribosomes that successfully 
completed translation of argA mRNAs (gray) to those that were prematurely interrupted (blue). Inner ring compares the percentage of interruptions that 
occurred on arginine codons (yellow) to those that occurred on non-arginine codons (green). All cells were simulated in aerobic growth in M9 Minimal 
Media supplemented with 0.4% glucose at 37 ◦C. Simulations of the updated model when using the optimized ArgRS k cat r epr esent 10-generation long 
lineages initialized at 15 random seeds (total of n = 150 cells). Simulations of the updated model when using the measured ArgRS k cat were initialized as 
20-generation long lineages from 10 random seeds, of which n = 171 viable cells were studied. Descriptions of the analyses performed in this figure can be 
found in Supporting Materials, Section 4. 
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degradation, cellular abundance, and complexation of the 
ArgA monomer subunits in addition to the number of 
complete N-acetylglutamate synthase hexamers in the cell 
(Figure 5 G). Whereas simulating with the optimized Ar- 
gRS k cat e xhibited robust e xpression of argA into ArgA 

monomers, simulations using the measured ArgRS k cat 
showed only one to two synthesis e v ents per time step 

during Generation 0 through 7. At both ArgRS k cat val- 
ues, degr adation play ed a minimal role and complexa- 
tion generally occurred when the cell had accumulated 

six subunits. Consequently, although both simulations be- 
gan with around 80 copies per cell, cells simulated with 

the measured ArgRS k cat did not express ar gA suf ficiently 

and quickly depleted their supply of N-acetylglutamate 
synthase hexamers. Although the low cellular abundance 
of N -acetylglutamate synthase hexamers was tolerable up 

through Generation 8, by Generation 9 the number of N- 
acetylglutamate synthase hexamers fell to zero (red line 
above the trace), causing the inability to accumulate protein 

observed in Figure 5 B. 
To investigate the source of low ArgA expression in our 

measured ArgRS k cat sim ulations, we sim ulated a ribosome 
profiling experiment. We monitored the identity of the un- 
occupied A site codon of ribosomes processing on argA 

mRNAs (Figure 5 H). The simulations performed with the 
optimized Ar gRS k cat sho wed an e v en distribution of time 
spent across the transcript, suggesting a steady procession 

of ribosomes (left panel of Figure 5 H). In contrast, simu- 
lations using the measured Ar gRS k cat sho wed a highly ir- 
regular ribosome profile, suggesting frequent interruptions 
to ribosome procession. Indeed, decreasing the ArgRS k cat 
from its optimized to measured value caused the percent- 
age of ribosomes found on arginine codons to increase from 

6.9% to 92.8% (90.4% on CGG, 1.6% on CGU, 0.8% on 

CGC, and 0.01% on AGG). We found that this increased 

pausing on arginine codons led to pr ematur e termination 

of ribosomes and reduction of pr otein pr oducts (Figure 5 I): 
whereas 86.2% of ribosomes initiated on argA mRNAs 
completed in simulations using the optimized ArgRS k cat , 
only 11.7% did so in the measured ArgRS k cat case. Fur- 
thermore, of these interrupted ribosomes, 98.97% were in- 
terrupted while waiting on arginine codons (whereas only 

0.05% of ribosomes interrupted in the optimized ArgRS 

k cat simulations experienced those interruptions on arginine 
codons). These results indicated that the greater number 
of ribosomal pauses on arginine codons led to higher rates 
of interruption (and equivalently lower rates of completion 

and thereby protein synthesis) of ArgA monomers. 
Prompted by these findings, we investigated where the 

ribosomes were located on the argA mRNA when they 

wer e pr ematur ely terminated, and found two r egions of 
high frequency with regard to premature ribosome termina- 
tion (Supplementary Figure S5A). First, the tandem CGG 

codons at codon positions 153 and 154 (0-indexed posi- 
tions) accounted for 76.9% of the pr ematur e ribosome ter- 
mina tions, indica ting tha t the tandem CGG codons corre- 
spond to the site where the majority of missed ArgA expres- 
sion opportunities occur. The second highest site of prema- 
ture ribosome termination occurred at a CGG codon at po- 
sition 23, which accounted for 13.5% of the terminations. 
Examination of the argA sequence showed that these were 

the first three CGG codons encountered by the ribosome 
during translation (Supplementary Figure S5B). These find- 
ings suggest that the first (or only) instances of CGG codons 
along an mRNA’s translatable codon sequence may be sites 
that are prone to premature ribosome termination –– and es- 
pecially so if the CGG codons are in tandem. 

This result prompted us to examine whether other pro- 
teins with tandemly arranged CGG codons also experi- 
enced a reduction in expression. First, we searched for tan- 
dem CGGs or other rare arginine codons (AGA or AGG) 
in all of the proteins in E. coli . Of 4,307 total proteins, tan- 
dem CGGs were found in 114 proteins (listed in Supple- 
mentary Table S4), tandem AGAs were found in 35 pro- 
teins, and tandem AGGs were found in 5 proteins (Supple- 
mentary Figure S5C). Three proteins were found to con- 
tain both tandem CGGs and AGAs, 62 proteins contained 

no arginine codons, and the remaining 4,094 proteins con- 
tained arginine codons that were not tandem arrangements 
of CGGs, AGAs or AGGs. To investigate whether the pres- 
ence of tandemly arranged rare arginine codons in a pro- 
tein’s codon sequence impacts its expression, we compared 

the expression of these genes in simulations using the opti- 
mized ArgRS k cat to those using the measured ArgRS k cat 
(which would reduce the availability of ar ginine-char ged 

arginyl-tRNAs, Supplementary Figure S5D). We found that 
proteins containing tandem CGG codons in particular were 
significantly under-expressed, with a reduction of roughly 

16.7-fold (two-tailed P -value = 4.7 × 10 

−3 calculated from 

the z -score for the median (0.06) observed in the ‘CGG, 
CGG’ = –2.83; treats ‘No Arginines’ group as the reference 
distribution). As a final test, we performed simulations in 

which the CGG tandem in argA was changed to a CGU tan- 
dem, and again ran simulations using either the optimized 

or experimentally measured ArgRS k cat s (Supplementary 

Figure S5E). These sequence changes had no significant im- 
pact on ArgA expression with respect to the optimized pa- 
r ameter str ain simulations, but incr eased ArgA expr ession 

by more than 20-fold when the experimentally-measured 

parameters were used (two-tailed p-value = 2.6 × 10 

−52 cal- 
culated from the z-score for the mean (276.4) observed in the 
‘CGU, Measured ArgRS k cat ’ distribution = 15.22; treats 
‘CGG, Measured ArgRS k cat ’ as the reference distribution, 
Supplementary Figure S5E). Taken together, these results 
strongly supported a causal relationship between the CGG 

tandem codon and downstream gene expression –– not only 

for argA , but also other genes. 
More broadly, these observations served to build a holis- 

tic picture of the reduced ArgRS k cat ’s unanticipated im- 
pact on cell growth via arginine biosynthesis –– a picture 
tha t connects aminoacyla tion, the pausing of individual 
ribosomes, translational interruption to the synthesis of 
N -acetylglutamate synthase, arginine biosynthesis, back to 

aminoacylation (via the arginine satur ation fr action, r ather 
than the k cat ) and finally to cessation in protein mass accu- 
mulation (Figure 6 A). Compared to the optimized ArgRS 

k cat , the maximal aminoacyla tion ra te of arginine tRNAs 
reduced 1.6-fold from 154 �M / s (average of all 10 genera- 
tions) to 98.0 �M / s (average of Generations 0 through 8) 
then dwindled to 8.4 �M / s during Generations 12 through 

15. The aminoacylated fraction, which maintained stable 
le v els at 84.2% in the optimized ArgRS k cat , dropped to near 
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Figure 6. The link between arginine tRNA pools and ArgA expression predicts a positi v e feedback mechanism regulating the arginine biosynthesis pathway. 
( A ) Holistic view of the impact of ArgRS aminoacylation capacity on cell growth in r epr esentati v e lineages simulated in the updated model when using 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/12/5911/7177890 by Stanford U

niversity Law
 Library [BILLIN

G
 AC

C
O

U
N

T] user on 20 Septem
ber 2023



Nucleic Acids Research, 2023, Vol. 51, No. 12 5927 

zero values in the measured ArgRS k cat until Generation 13 

when the replenished arginine pool and slowed ribosome 
elonga tion ra te (depicted in do wnstream ro ws in Figure 6 A) 
caused tRNA pools to accumulate in their aminoacylated 

forms. Sim ultaneousl y, ribosomes translating argA mRNAs 
were observed to termina te prema turely during their proces- 
sion, as indicated by the ribosomes on the beginning por- 
tion of the argA mRNA frequently being unable to trans- 
late beyond the tandem CGG codons at sequence positions 
153 and 154 compared to the optimized ArgRS k cat case 
(also apparent in Figure 5 H), where the vast majority of 
ribosomes continued to translate beyond position 154 to 

the end of the transcript. Accordingly, the accumulation of 
ribosomes on argA mRNAs increased from an average of 
1.9 ribosomes per transcript in the optimized ArgRS case 
to 3.5 (average of Generations 0 through 8) –– and a max- 
imum of 40 in the beginning of Generation 5 –– ribosomes 
per transcript in the measured ArgRS case. This trend ex- 
tended into the pr ematur e ribosome termina tion ra te, which 

increased from an average rate of 2.5 × 10 

−2 s –1 in the opti- 
mized ArgRS simulations to 3.6 × 10 

−2 s –1 (average of Gen- 
erations 0 through 8) –– and a maximum of 17.5 s –1 in the 
beginning of Generation 8 –– in the measured ArgRS case. 
Consequently, the cellular abundance of ArgA monomers 
reduced 1.7-fold from an average of 2.8 monomers when us- 
ing the optimized ArgRS k cat to 1.7 (average of Generations 
0 through 7) in the measured Ar gRS k cat case, follo wed by a 

complete absence of ArgA monomers for the remainder of 
the simulation. These trends carried over to the number of 
he xamers: an av erage of 21.4 copies of N-acetylglutamate 
synthase per cell in the measured ArgRS k cat case (average 
of Generations 0 through 8), compared to the average abun- 
dance of 92.1 hexamers in the optimized case. Correspond- 
ingl y, not onl y were N-acetylglutamate synthase hexamers 
unable to accumulate but the hexamer count also halved at 
each di vision e v ent, diminishing to just two copies in Gen- 
eration 8 and zero copies by Generation 9 and onwards (in- 
dicated with a red line) –– a stark contrast to the optimized 

ArgRS k cat sim ulations, w hich showed regular exponential 
accumulation of the hexamer that resulted in an average of 
2.0-fold increases during each generation. The absence of 
N-acetylglutamate synthase enzymes directly impacted the 
rate of the N-acetyl transfer r eaction: decr easing from an 

average of 0.31 mmol per gram dry cell weight per hour in 

the optimized ArgRS k cat simulations to 7.8 × 10 

−2 (aver- 

age of Generations 0 through 8) –– and zero flux in Genera- 
tions 9 and onwards (indicated with a red line) –– in the mea- 
sured ArgRS k cat simulations. As a result, the cellular pool 
of arginine experienced a period of depletion, decreasing 

from its steady le v el of 286.5 �M when using the optimized 

ArgRS k cat to 21.4 �M during Generations 9 through 13 in 

the measured ArgRS k cat simulations. In turn, the decreased 

arginine pool impacted fr actional satur ation of the ArgRS 

enzyme for arginine, which decreased from 0.59 in the op- 
timized ArgRS k cat case to 8.7 × 10 

−2 during Generations 
9 through 13 in the measured ArgRS k cat case. The orig- 
inal perturbation (decreasing the ArgRS k cat from its opti- 
mized to measured value) and the decreased fractional satu- 
ra tion, together, influenced the aminoacyla tion ra te of argi- 
nine tRNAs: decreasing from the steady rate of 22.2 �M / s 
in the optimized ArgRS k cat simulations to 5.8 �M / s dur- 
ing Generations 0 through 8, 0.2 �M / s during Generations 
9 through 13, and zero thereafter. At the cellular scale, the 
reduced aminoacylation rate of arginine tRNAs directly im- 
pacted the ribosomal elonga tion ra te, which decreased from 

a steady rate of 17.5 amino acids per second per ribosome 
when using the optimized ArgRS k cat to 5.6 amino acids per 
second per ribosome in the measured ArgRS k cat case dur- 
ing Generations 0 through 8, 0.3 amino acids per second per 
ribosome during Generations 9 through 13, and zero there- 
after. Finally, the functional consequence of this limiting 

arginine biosynthetic enzyme presented itself as the cessa- 
tion of protein mass accumulation starting at Generation 9, 
first noted in Figure 5 B , tha t exacerba ted the slo wed gro wth 

observed in Figure 5 A. 

DISCUSSION 

In summary, we investigated the previously reported enigma 

of aminoacyl-tRNA synthetases: that their measured ki- 
netic capacities may not be sufficient to support protein syn- 
thesis in the cell ( 3 ). By incorporating a detailed and mech- 
anistic r epr esenta tion of tRNA aminoacyla tion and codon- 
based polypeptide elongation into the E. coli model, we 
could examine the measured aminoacyl-tRNA synthetase 
k cat s within a simulated context of the living cell. We found 

that the r equir ed k cat s were up on average 7.6-fold higher 
than the highest measurements from our curation, and we 
identified through two aminoacyl-tRNA synthetase case 
studies –– HisRS and ArgRS –– that both a modest and sub- 

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
the optimized (Variant 0, Seed 8, all 10 generation on the left) and measured (Variant 6, Seed 8, all 20 generations on the right) ArgRS k cat s. From top to 
bottom: 1) maximal aminoacylation rate of arginine tRNAs, 2) aminoacylated fraction of arginine tRNAs, 3) position (and codon identities by color: CGU 

in blue, CGG in green, CGC in yellow, AGG in pink, and non-arginine codons in gray) of ribosomes on argA mRNAs, 4) number of ribosomes per argA 

mRNA, 5) pr ematur e termination rate of ribosomes from argA mRNAs, 6) number of ArgA monomers, 7) number of ArgA hexamers ( N -acetylglutamate 
synthase), 8) flux through the N-acetyl transfer reaction in the arginine biosynthesis pathway, 9) concentration of arginine, 10) fractional saturation of 
ArgRS for its substra te arginine, calcula ted as [ A ] 

( K M,A + [ A ]) , where [ A ] is the concentration of arginine and K M,A 

is the Michaelis–Menten constant describing 
the affinity between arginine and ArgRS, 11) aminoacylation rate of arginine tRNAs, 12) ribosome elongation rate, and 13) total protein mass. Vertical 
dashed lines indicate cell division events. Values across the top indicate the generation number. Red lines in rows 7 (ArgA hexamers), 8 ( N -acetyl transfer 
reaction), 11 (aminoacyla tion ra te of arginine tRNAs), and 12 (ribosome elongation rate) indicate the period of time when the quantity shown (number 
of molecules, reaction flux, or rate) had a value of 0. All cells were simulated in aerobic growth in M9 Minimal Media supplemented with 0.4% glucose 
a t 37 ◦C . ( B ) Positi v e feedback by ribosomal pausing on tandem CGG codons on argA mRNAs. Arginine availability impacts the aminoacylation of argX 

tRN As with arginine, w hich in turn influences the ability of ribosomes to read through tandem CGG codons on ar gA mRNAs. Successful transla tion 
of argA mRNAs leads to the production of ArgA, the first enzyme in the arginine biosynthesis pa thway. ( C ) Regula tory mechanisms characterizing the 
arginine biosynthesis pathway. The propagating impact of using the lower, measured ArgRS k cat on cell physiology suggests the presence of a regulatory 
positi v e feedback link through ribosomal pausing on tandem CGG codons when translating the mRNA transcript for the arginine biosynthetic enzyme 
ArgA. Descriptions of the analyses performed in this figure can be found in Supporting Materials, Section 4. 
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stantial decrease in k cat from the optimized to measured 

values can have a significant impact on cell growth. In the 
case of HisRS, we discovered that ribosome elongation rates 
were sensiti v e to aminoacyl-tRNA synthetase variability 

when using the measured k cat and that the higher, optimized 

k cat overcame this sensitivity. The ArgRS study led us to a 

more complex situation which linked several processes that 
impair cell growth via a non-intuiti v e, emergent mechanism. 

Ov erall, our wor k strongly supports Jakubowski and 

Goldman’s original assessment that the measured activities 
of aminoacyl-tRNA synthetases are too low to be compat- 
ible with cellular demands for protein synthesis. In fact, we 
calculated an e v en higher ov erall k cat r equir ement, as they 

anticipated in their original paper. We found that the pri- 
mary source of this difference between estimates was the 
dynamic range of aminoacyl-tRNA synthetase concentra- 
tions in the single-cell context. While the calculations per- 
formed by Jakubowksi and Goldman were informed by av- 
erage measurements, we found that examining the lowest 
aminoacyl-tRNA synthetase concentration during the cell’s 
life is of critical importance, for the simple reason that cell 
growth must be robust to variance in protein expression. 

Other related studies provide insight as to the mecha- 
nism of how this higher activity might be achieved. No- 
tably, the phenomenon of macr omolecular cr o w ding has 
been reported to impact the dynamics of molecules in liv- 
ing cells ( 24–26 ). For example, Maheshwari and colleagues 
built a detailed, physics-based model of the E. coli cyto- 
plasm and reported that the impr oved pr oximity between 

ternary complexes and ribosomes facilitated by a cro w ded 

environment reduced the search distance between ternary 

complexes and ribosomes, which could enable individual ri- 
bosomes to become more producti v e than widely belie v ed 

( 27 ). Along these same lines, the use of co-solute crow- 
ders has enabled cro w ded environments to be replicated 

in in vitro settings and has been reported to increase pro- 
tein synthesis rates when added to cell-fr ee expr ession sys- 
tems ( 28 ). Spectrophotometric methods have also emerged 

alongside the traditional method of detecting radiolabeled 

molecules to determine aminoacyl-tRNA synthetase activi- 
ties ( 29 , 30 ). One such technique ( 31 ) indica ted tha t the addi- 
tion of tRN A –– w hich is typicall y absent in traditional PPi 
exchange assays ( 32 ) –– promoted continuous amino acid ac- 
tiv ation and thereb y greater detection of PPi release. The 
role of post-transcriptional modifications of tRNAs has 
also been noted to impact the identity elements that de- 
termine aminoacyl-tRNA synthetase specificity ( 33 ). As 
such, the differences between nati v e (modified) and in vitro 

transcribed (unmodified) tRNAs ( 34–37 ) may influence 
reco gnition of tRN A substrates by their aminoacyl-tRN A 

synthetase enzymes. Indeed, Clifton et al. found that re- 
placement of m 

1 G37-modified tRNA with G37-unmodified 

tRNA resulted in a 17-fold reduction in aminoacylation 

( 38 ). Gi v en such findings, we consider the optimized k cat s 
presented in this study to be initial estimates; we anticipate 
that the E. coli model will produce more precise predictions 
as additional measurements are made and subsequently in- 
corporated, and the model thereby de v elops further ov er 
time. 

Our most striking result was that the consequence of low 

ArgRS k cat repr oducibly r outed to the arginine biosynthe- 

sis pathway. We anticipated insufficient aminoacyl-tRNA 

synthetase activities would impact protein synthesis –– and 

that this in turn would reach a variety of functions based 

on the stochastic nature of gene expression in the cell. This 
agrees with what we saw in the HisRS case, which showed 

that a modest (2.7-fold) decrease of aminoacyl-tRNA syn- 
thetase activity led to decreases in global ribosome elonga- 
tion ra te tha t genera ted simula tions of cells tha t could com- 
plete their cell cycles, albeit slowly. In the case of ArgRS, 
howe v er, the more dramatic 8.1-fold decrease of activity 

caused a prolonged insufficiency that caused decreased ex- 
pression of the arginine biosynthetic enzyme ArgA through 

ribosome pausing at tandem CGG arginine codons, sug- 
gesting a regulatory positi v e feedback link between arginine 
tRNA pools and the synthesis of arginine itself (Figure 6 B). 

Reminiscent of the mechanism of ribosome-mediated 

transcriptional a ttenua tion, the presence of tandem CGG 

arginine codons in the coding region of ArgA (and possibly 

other genes listed in Supplementary Table S4) may serve as 
a sensor of arginyl-tRNA abundance. A potential reason 

for our simulated cell’s particular sensitivity to the CGG 

codon identity may be that the CGG codon is only read by 

its co gnate tRN A, argX (with anticodon 5’-CCG-3’). Since 
the argX tRNA is the lowest abundant arginine tRNA, both 

in our simulations and by experimental measurement ( 18 ), 
it may be the most sensiti v e tRNA to reduced ArgRS k cat . 
In contrast, the CGU codon can be read by 4 different argi- 
nine tRNAs –– argQ , argV , argY and argZ –– which are the 
top 4 most abundant arginine tRNAs with a total mean 

abundance of 2635 molecules per cell (11.9-fold greater than 

argX ). 
Interestingly, a corroborati v e finding was reported by 

McNulty and colleagues in their study of tandem triplet 
CGG codons occurring in the coding region for a p27 pro- 
tease from Herpes Simplex Virus 2 (HSV-2) ( 39 ). When 

expressed in E. coli , +1 frameshift e v ents were observ ed 

from both the second and third CGG codons in the triplet 
cluster. Additionally, significant le v els of glutamine misin- 
corporation for arginine were reported, which the authors 
suggest resulted from second base misreading of CGG as 
CAG. Howe v er, coe xpression of the ar gX gene elimina ted 

the frameshifts and misincorporation e v ents, and increased 

expression by up to 7-fold. 
Taken together, these findings suggest that the presence 

of tandem CGG codons located at positions 153 and 154 in 

the argA codon sequence is sensiti v e to reduced availability 

of ar ginine-char ged ar ginyl-tRNAs. As a result, the tandem 

CGG codons may be able to serve as a site of regulation 

that responds to reduced arginine availability by increas- 
ing the chance of pr ematur e ribosome termination. This be- 
havior can be classified as a positi v e feedback mechanism 

that responds to high arginine av ailability b y increasing the 
chance of successful translation e v ents. The predicted pres- 
ence of this positi v e feedback mechanism, together with 

the previously known negative feedback mechanisms pro- 
vided by both transcriptional r epr ession by arginine-bound 

ArgR and direct inhibition of ArgA by arginine, prompt 
us to re-classify the regulation of the arginine biosyn- 
thesis pathway as a combination positi v e-and-negati v e 
feedback loop (Figure 6 C). Pfeuty and Kaneko have re- 
ported that such combination feedback loops confer rapid 
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and re v ersib le responses to changing environments ( 40 ), 
which may be applicable to the cell’s response to arginine 
depletion. 

The model reported in this work could be further 
strengthened by incorporating richer representations of the 
translation machinery. Aminoacyl-tRNAs have been re- 
ported to bind elongation factor Tu with uniform binding 

af finities ( 41 ). Incorpora ting a ma thema tical model of these 
interactions (such as in ( 42 )) may further elucidate how 

the deli v ery of aminoacyl-tRNAs to ribosomes informs the 
activities of aminoacyl-tRNA synthetases in vivo . In addi- 
tion, r epr esenting ribosome procession to a finer resolu- 
tion would enhance the analyses presented in this study. For 
e xample, volume e xclusion of polysomes on shared tran- 
scripts was captured by Levin and Tuller ( 7 ), but is not 
curr ently modeled her e. Additionally, incorporating mea- 
surements of ribosome residence times on codons ( 43 ), es- 
timations of translation times at the codon resolution ( 44 ), 
the influence of mRNA and nascent-peptide sequences on 

elonga tion d ynamics ( 45 ), and a mechanistic model of ri- 
bosomal frameshifting ( 46 ) may further characterize the re- 
lationship between aminoacyl-tRNA synthetase kinetic ca- 
pacities and ribosome elonga tion ra tes. Furthermore, the E. 
coli model does not yet r epr esent a detailed kinetic scheme 
of codon reading by tRNA and release factors, such as 
demonstrated by Ieong and colleagues ( 47 ). Incorporating 

their model may improve the granularity of ribosome elon- 
ga tion d ynamics. Additionally, r epr esenting ribosome paus- 
ing (at Pr oline-Pr oline motifs ( 48 ) and at Shine-Dalgarno 

like sequences ( 49 )) and rescue (by alternati v e ribosome- 
rescue factor A ( 50 , 51 )) may enable new insights regarding 

the impact of insufficient aminoacyl-tRNAs on ribosome 
procession. Moving forward, we note that the (p)ppGpp- 
mediated stringent response in E. coli is known to be acti- 
v ated b y the presence of non-aminoacylated tRNAs in the 
ribosome A site ( 52 , 53 ). Integrating this work with a model 
of growth rate control via ppGpp that was recently imple- 
mented in our lab ( 54 ) would gi v e us the opportunity to ex- 
plore overall growth responses in amino acid-limited media, 
building on work such as that of Elf et al. ( 6 ). 

Finall y, we reco gnize that the detailed and holistic inves- 
tigations performed here were only made possible by em- 
bedding the tRNA aminoacylation system into a large-scale 
model tha t alread y accounts for millions of da ta points re- 
ported in thousands of studies by hundreds of labs over the 
past se v eral decades ( 5 ). Taken together, the expansion to 

the E. coli model reported here advances the depth of mech- 
anistic detail incorporated into the translational machinery 

and enhances the breadth of potential for generating pre- 
dictions and accelerating biological discovery. We anticipate 
that as other functionalities are incorporated into the E. coli 
Whole Cell Modeling Project ( 8 ), similarly remar kab le and 

unexpected phenotypes will continue to emerge and cat- 
alyze the accompanying biochemical and / or cell biological 
measurements that lead to new discoveries. 
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